Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Overview

SweepContractor.jl

A Julia package for the contraction of tensor networks using the sweep-line-based contraction algorithm laid out in the paper General tensor network decoding of 2D Pauli codes. This algorithm is primarily designed for two-dimensional tensor networks but contains graph manipulation tools that allow it to function for generic tensor networks.

Sweep-line anim

Below I have provided some examples of SweepContractor.jl at work. Scripts with working versions of each of these examples are also included in the package. For more detailed documentation consult help pages by using ? in the Julia REPL.

Feel free to contact me with any comments, questions, or suggestions at [email protected]. If you use SweepContractor.jl for research, please cite either arXiv:2101.04125 and/or doi:10.5281/zenodo.5566841.

Example 1: ABCD

Consider the following four tensor networks, taken from the tensor network review Hand-waving and Interpretive Dance:

ABCD1,

where each tensor is defined

ABCD2

First we need to install SweepContract.jl, which we do by running

import Pkg
Pkg.add("SweepContractor")

Now that it's installed we can use the package by running

using SweepContractor

Next we need to define our network. We do this by initialising a LabelledTensorNetwork, which allows us to have a tensor network with elements labelled by an arbitrary type, in our case Char.

LTN = LabelledTensorNetwork{Char}()

Next, we populate this with our four tensors, which are each specified by giving a list of neighbouring tensors, an array consisting of the entries, and a two-dimensional location.

LTN['A'] = Tensor(['D','B'], [i^2-2j for i=0:2, j=0:2], 0, 1)
LTN['B'] = Tensor(['A','D','C'], [-3^i*j+k for i=0:2, j=0:2, k=0:2], 0, 0)
LTN['C'] = Tensor(['B','D'], [j for i=0:2, j=0:2], 1, 0)
LTN['D'] = Tensor(['A','B','C'], [i*j*k for i=0:2, j=0:2, k=0:2], 1, 1)

Finally, we want to contract this network. To do this we need to specify a target bond dimension and a maximum bond-dimension. In our case, we will use 2 and 4.

value = sweep_contract(LTN,2,4)

To avoid underflows or overflows in the case of large networks sweep_contract does not simply return a float, but returns (f::Float64,i::Int64), which represents a valuef*2^i. In this case, it returns (1.0546875, 10). By running ldexp(sweep...) we can see that this corresponds to the exact value of the network of 1080.

Note there are two speedups that can be made to this code. Firstly, sweep_contract copies the input tensor network, so we can use the form sweep_contract! which allows the function to modify the input tensor network, skipping this copy step. Secondly, sweep_contract is designed to function on arbitrary tensor networks, and starts by flattening the network down into two dimensions. If our network is already well-structured, we can run the contraction in fast mode skipping these steps.

value = sweep_contract!(LTN,2,4; fast=true)

Examples 2: 2d grid (open)

Next, we move on to the sort of network this code was primarily designed for, a two-dimensional network. Here consider an square grid network of linear size L, with each index of dimension d. For convenience, we can once again use a LabelledTensorNetwork, with labels in this case corresponding to coordinates in the grid. To construct such a network with Gaussian random entries we can use code such as:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=Tuple{Int,Int}[];
    i>1 && push!(adj,(i-1,j))
    j>1 && push!(adj,(i,j-1))
    i<L && push!(adj,(i+1,j))
    j<L && push!(adj,(i,j+1))
    LTN[i,j] = Tensor(adj, randn(d*ones(Int,length(adj))...), i, j)
end

We note that the if statements used have the function of imposing open boundary conditions. Once again we can now contract this by running the sweep contractor (in fast mode), for some choice of bond-dimensions χ and τ:

value = sweep_contract!(LTN,χ,τ; fast=true)

Example 3: 2d grid (periodic)

But what about contracting a 2d grid with periodic boundary conditions? Well, this contains a small number of long-range bonds. Thankfully, however SweepContractor.jl can run on such graphs by first planarising them.

We might start by taking the above code and directly changing the boundary conditions, but this will result in the boundary edges overlapping other edges in the network (e.g. the edge from (1,1) to (2,1) will overlap the edge from (1,1) to (L,1)), which the contractor cannot deal with. As a crude workaround we just randomly shift the position of each tensor by a small amount:

LTN = LabelledTensorNetwork{Tuple{Int,Int}}();
for i1:L, j1:L
    adj=[
        (mod1(i-1,L),mod1(j,L)),
        (mod1(i+1,L),mod1(j,L)),
        (mod1(i,L),mod1(j-1,L)),
        (mod1(i,L),mod1(j+1,L))
    ]
    LTN[i,j] = Tensor(adj, randn(d,d,d,d), i+0.1*rand(), j+0.1*rand())
end

Here the mod1 function is imposing our periodic boundary condition, and rand() is being used to slightly move each tensor. Once again we can now run sweep_contract on this, but cannot use fast-mode as the network is no longer planar:

value = sweep_contract!(LTN,χ,τ)

Example 4: 3d lattice

If we can impose periodic boundary conditions, can we go further away from 2D? How about 3D? We sure can! For this we can just add another dimension to the above construction for a 2d grid:

LTN = LabelledTensorNetwork{Tuple{Int,Int,Int}}();
for i1:L, j1:L, k1:L
    adj=Tuple{Int,Int,Int}[];
    i>1 && push!(adj,(i-1,j,k))
    i<L && push!(adj,(i+1,j,k))
    j>1 && push!(adj,(i,j-1,k))
    j<L && push!(adj,(i,j+1,k))
    k>1 && push!(adj,(i,j,k-1))
    k<L && push!(adj,(i,j,k+1))
    LTN[i,j,k] = Tensor(
        adj,
        randn(d*ones(Int,length(adj))...),
        i+0.01*randn(),
        j+0.01*randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Example 5: Complete network

So how far can we go away from two-dimensional? The further we stray away from two-dimensional the more inefficient the contraction will be, but for small examples arbitrary connectivity is permissible. The extreme example is a completely connected network of n tensors:

TN=TensorNetwork(undef,n);
for i=1:n
    TN[i]=Tensor(
        setdiff(1:n,i),
        randn(d*ones(Int,n-1)...),
        randn(),
        randn()
    )
end

value = sweep_contract!(LTN,χ,τ)

Here we have used a TensorNetwork instead of a LabelledTensorNetwork. In a LabelledTensorNetwork each tensor can be labelled by an arbitrary type, which is accomplished by storing the network as a dictionary, which can incur significant overheads. TensorNetwork is built using vectors, which each label now needs to be labelled by an integer 1 to n, but can be significantly faster. While less flexible, TensorNetwork should be preferred in performance-sensitive settings.

You might also like...
 Pretty Tensor - Fluent Neural Networks in TensorFlow
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • Restructure code base and depend on DataStructures rather than copying code.

    Restructure code base and depend on DataStructures rather than copying code.

    • Organize some files in subdirectories
    • SweepContractor.jl uses a data structure copied and modified from DataStructures.jl. This PR minimizes the number of files copied and instead depends as much as possible on DataStructures.jl
    • Creates a test suite with a few tests taken from the examples.
    opened by jlapeyre 0
Releases(v0.1.7)
Owner
Christopher T. Chubb
Christopher T. Chubb
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022