Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Overview

ONNX-ImageNet-1K-Object-Detector

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

Imagenet 1K Object Detection Original image: https://commons.wikimedia.org/wiki/File:Il_cuore_di_Como.jpg

Why

There are a lot of object detection models, but since most of them are trained in the COCO dataset, most of them can only detect a maximum of 80 classes. This repository proposes a "quick and dirty" solution to be able to detect the 1000 objects available in the ImageNet dataset.

Important

  • This model uses a lightweight class agnostic object localizer to first detect the objects. Therefore, this repository is not going to behave as well as other object detection models in complex scenes. In those cases, the object localizer will fail quickly and therefore no objects will be detected.
  • The ResNet50 clasifier is fast in a desktop GPU, however, since it needs to run for each of the detected boxes, the performance might be affected for images with many objects.

Requirements

  • Check the requirements.txt file.

Installation

pip install -r requirements.txt

ONNX model

  • Class Agnostic Object Localizer: The original model from TensorflowHub (link at the bottom) was converted to different formats (including .onnx) by PINTO0309, the models can be found in his repository. This repository will automatically download the model if the model is not found in the models folder.

  • ResNet50 Classifier: The original model from PaddleClas (link at the bottom) was converted to ONNX format using a similar procedure as the one described in this article by PINTO0309. This repository will automatically download the model.

How to use

  • Image inference:
python image_object_detection.py
  • Video inference:
python video_object_detection.py
  • Webcam inference:
python video_object_detection.py

Examples

Macaque Detection

Macaque Detection Original image: https://commons.wikimedia.org/wiki/File:Onsen_Monkey.JPG

Christmas Stocking Detection

Christmas Stocking Detection Original image: https://unsplash.com/photos/paSqTlm3DsA

Burrito Detection

Burrito Detection Original image: https://commons.wikimedia.org/wiki/File:Breakfast_burrito_(cropped).jpg

Bridge Detection

Bridge Detection Original image: https://commons.wikimedia.org/wiki/File:Bayonne_Bridge_Collins_Pk_jeh-2.JPG

[Inference video Example]

1k.detector.output_Trim.mp4

Original video: https://www.pexels.com/video/a-medusa-jellyfish-swimming-gracefully-underwater-2731905/ (by Vova Krasilnikov)

References

Owner
Ibai Gorordo
Passionate about sensors, technology and their potential to help people.
Ibai Gorordo
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023