Source code for "OmniPhotos: Casual 360° VR Photography"

Overview

OmniPhotos: Casual 360° VR Photography

Project Page | Video | Paper | Demo | Data

This repository contains the source code for creating and viewing OmniPhotos – a new approach for casual 360° VR photography using a consumer 360° video camera.

OmniPhotos: Casual 360° VR Photography
Tobias Bertel, Mingze Yuan, Reuben Lindroos, Christian Richardt
ACM Transactions on Graphics (SIGGRAPH Asia 2020)

Demo

The quickest way to try out OmniPhotos is via our precompiled demo (610 MB). Download and unzip to get started. Documentation for the precompiled binaries, which can also be downloaded separately (25 MB), can be found in the downloaded demo directory.

For the demo to run smoothly, we recommend a recently updated Windows 10 machine with a discrete GPU.

Additional OmniPhotos

We provide 31 OmniPhotos for download:

  • 9 preprocessed datasets that are ready for viewing (3.2 GB zipped, 12.8 GB uncompressed)
  • 31 unprocessed datasets with their input videos, camera poses etc.; this includes the 9 preprocessed datasets (17.4 GB zipped, 17.9 GB uncompressed)

Note: A few of the .insv files are missing for the 5.7k datasets. If you need to process these from scratch (using the insv files) these files can be found here.

How to view OmniPhotos

OmniPhotos are viewed using the "Viewer" executable, either in windowed mode (default) or in a compatible VR headset (see below). To run the viewer executable on the preprocessed datasets above, run the command:

Viewer.exe path-to-datasets/Preprocessed/

with paths adjusted for your machine. The viewer will automatically load the first dataset in the directory (in alphabetical order) and give you the option to load any of the datasets in the directory.

If you would like to run the viewer with VR enabled, please ensure that the firmware for your HMD is updated, you have SteamVR installed on your machine, and then run the command:

Viewer.exe --vr path-to-datasets/Preprocessed/

The OmniPhotos viewer can also load a specific single dataset directly:

Viewer.exe [--vr] path-to-datasets/Preprocessed/Temple3/Config/config-viewer.yaml

How to preprocess datasets

If you would like to preprocess additional datasets, for example "Ship" in the "Unprocessed" directory, run the command:

Preprocessing.exe path-to-datasets/Unpreprocessed/Ship/Config/config-viewer.yaml

This will preprocess the dataset according to the options specified in the config file. Once the preprocessing is finished, the dataset can be opened in the Viewer.

For processing new datasets from scratch, please follow the detailed documentation at Python/preprocessing/readme.md.

Compiling from source

The OmniPhotos Preprocessing and Viewer applications are written in C++11, with some Python used for preparing datasets.

Both main applications and the included libraries use CMake as build system generator. We recommend CMake 3.16 or newer, but older 3.x versions might also work.

Our code has been developed and tested with Microsoft Visual Studio 2015 and 2019 (both 64 bit).

Required dependencies

  1. GLFW 3.3 (version 3.3.1 works)
  2. Eigen 3.3 (version 3.3.2 works)
    • Please note: Ceres (an optional dependency) requires Eigen version "3.3.90" (~Eigen master branch).
  3. OpenCV 4.2
    • OpenCV 4.2 includes DIS flow in the main distribution, so precompiled OpenCV can be used.
    • OpenCV 4.1.1 needs to be compiled from source with the optflow contrib package (for DIS flow).
    • We also support the CUDA Brox flow from the cudaoptflow module, if it is compiled in. In this case, tick USE_CUDA_IN_OPENCV in CMake.
  4. OpenGL 4.1: provided by the operating system
  5. glog (newer than 0.4.0 master works)
  6. gflags (version 2.2.2 works)

Included dependencies (in /src/3rdParty/)

  1. DearImGui 1.79: included automatically as a git submodule.
  2. GL3W
  3. JsonCpp 1.8.0: almalgamated version
  4. nlohmann/json 3.6.1
  5. OpenVR 1.10.30: enable with WITH_OPENVR in CMake.
  6. TCLAP
  7. tinyfiledialogs 3.3.8

Optional dependencies

  1. Ceres (with SuiteSparse) is required for the scene-adaptive proxy geometry fitting. Enable with USE_CERES in CMake.
  2. googletest (master): automatically added when WITH_TEST is enabled in CMake.

Citation

Please cite our paper if you use this code or any of our datasets:

@article{OmniPhotos,
  author    = {Tobias Bertel and Mingze Yuan and Reuben Lindroos and Christian Richardt},
  title     = {{OmniPhotos}: Casual 360° {VR} Photography},
  journal   = {ACM Transactions on Graphics},
  year      = {2020},
  volume    = {39},
  number    = {6},
  pages     = {266:1--12},
  month     = dec,
  issn      = {0730-0301},
  doi       = {10.1145/3414685.3417770},
  url       = {https://richardt.name/omniphotos/},
}

Acknowledgements

We thank the reviewers for their thorough feedback that has helped to improve our paper. We also thank Peter Hedman, Ana Serrano and Brian Cabral for helpful discussions, and Benjamin Attal for his layered mesh rendering code.

This work was supported by EU Horizon 2020 MSCA grant FIRE (665992), the EPSRC Centre for Doctoral Training in Digital Entertainment (EP/L016540/1), RCUK grant CAMERA (EP/M023281/1), an EPSRC-UKRI Innovation Fellowship (EP/S001050/1), a Rabin Ezra Scholarship and an NVIDIA Corporation GPU Grant.

Comments
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [ ] link to github page on index.html (mainpage.hpp)
    • [ ] add documentation convention to docs\README.md
    • [ ] fork branch from cr333/main and apply changes to that
    • [ ] create new PR from forked branch
    opened by reubenlindroos 1
  • Adds a progress bar when circleselector is running

    Adds a progress bar when circleselector is running

    Also improves speed of the circleselector module by ~50%

    Todo:

    • [x] add tqdm to requirements.txt
    • [x] np.diffs for find_path_length
    • [x] atomic lock for incrementing the progress bar?
    opened by reubenlindroos 0
  • Circle Selector

    Circle Selector

    • [x] clean up requirements.txt
    • [x] save plot of heatmaps to the cache/dataset directory.
    • [x] move json file to capture directory
    • [x] update the template with option to switch off circlefitting
    • [x] update template to remove some of the options (e.g op_filename_expression)
    • [x] Update README.md with automatic circle selection (section 2.2)
    • [x] Update documentation for installation?
    • [x] Linting (spacing), comment convention, Pep convention
    • [x] sort imports
    • [x] replace op_filename_epression with original_filename_expression

    cv_utils

    • [x] remove extra copy of computeColor
    • [x] change pjoin to os.path.join
    • [x] add more documentation for parameters in cv_utils (change lookatang to look_at_angle)
    • [x] 'nxt' to 'next'
    • [x] comment on line 100 (slice_equirect)

    datatypes

    • [x] more comments on some of the methods in PointDict
    opened by reubenlindroos 0
  • Documentation pipeline update

    Documentation pipeline update

    Pipeline to automatically create documenation on read the docs using doxygen.

    • [x] link to github page on index.html (mainpage.hpp)
    • [x] add documentation convention to docs\README.md
    • [x] fork branch from cr333/main and apply changes to that
    • [x] create new PR from forked branch
    • [x] remove documentation for header comment block in docs/README.md
    • [x] cleanup index.rst (try removing, see if sphinx can build anyway)
    • [ ] mainpage.hpp cleanup (capitalise, centralise)
    • [x] clarify line 48 in README.md
    opened by reubenlindroos 0
  • Demo updated

    Demo updated

    Converts demo documentation files from rst and based in sphinx to be hosted in Github. The sites markdown API now renders the documentation files rather than using sphinx + rtd.

    opened by reubenlindroos 0
  • Adds build test to master branch on push and PR

    Adds build test to master branch on push and PR

    build

    • [ ] change actions to not send email for every build
    • [x] fix requested changes
    • [x] make into squash merge to not mess with main branch history
    • [x] group build steps (building dependencies which ahve been left seperate for debugging purposes)
    • [x] check glog build variables in cmake (e.g BUILD_TEST should not be enabled)
    • [x] check eigen warnings in build log
    • [x] check if precompiled headers might speed up build
    • [x] check if multithread build could be used
    • [x] remove verbose flag from extraction of opencv

    test

    • [x] add test data download
    • [x] reduce size of test dataset
    • [x] check what happens on failure
    • [ ] check if we can "publish" test results (xml?)
    opened by reubenlindroos 0
  • Get problems while preprocessing

    Get problems while preprocessing

    I did download all of those binary files from here:https://github.com/cr333/OmniPhotos/releases/download/v1.1/OmniPhotos-v1.1-win10-x64.zip

    And I did put ffmpeg.exe into system Path. However, Im getting errors saying this below:

    $ ./preproc/preproc.exe -c preproc-config-template.yaml [23276] Failed to execute script 'main' due to unhandled exception! Traceback (most recent call last): File "main.py", line 24, in File "preproc_app.py", line 39, in init File "data_preprocessor.py", line 32, in init File "abs_preprocessor.py", line 70, in init File "abs_preprocessor.py", line 225, in load_origin_data_info File "ffmpeg_probe.py", line 20, in probe File "subprocess.py", line 800, in init File "subprocess.py", line 1207, in _execute_child FileNotFoundError: [WinError 2]

    image

    opened by BlairLeng 2
Releases(v1.1)
Owner
Christian Richardt
Christian Richardt
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022