Provide partial dates and retain the date precision through processing

Overview

Prefix date parser

This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001-4 or 2001-04-02, with the implication that only the year, month or day is known. This library will process such partial dates into a structured format and allow their validation and re-formatting (e.g. turning 2001-4 into 2001-04 above).

The library does not support the complexities of the ISO 8601 and RFC 3339 standards including date ranges and calendar-week/day-of-year notations.

Installation

Install prefixdate using PyPI:

$ pip install prefixdate

Usage

The library provides a variety of helper functions to parse and format partial dates:

from prefixdate import parse, normalize_date, Precision

# Parse returns a `DatePrefix` object:
date = parse('2001-3')
assert date.text == '2001-03'
date = parse(2001)
assert date.text == '2001'
assert date.precision == Precision.YEAR

date = parse(None)
assert date.text is None
assert date.precision == Precision.EMPTY
# This will also be the outcome for invalid dates!

# Normalize to a standard string:
assert normalize_date('2001-1') == '2001-01'
assert normalize_date('2001-00-00') == '2001'
assert normalize_date('Boo!') is None

# This also works for datetimes:
from datetime import datetime
now = datetime.utcnow().isoformat()
minute = normalize_date(now, precision=Precision.MINUTE)

# You can also feed in None, date and datetime:
normalize_date(datetime.utcnow())
normalize_date(datetime.date())
normalize_date(None)

You can also use the parse_parts helper, which is similar to the constructor for a datetime:

from prefixdate import parse_parts, Precision

date = parse_parts(2001, '3', None)
assert date.precision == Precision.MONTH
assert date.text == '2001-03'

Format strings

For dates which are not already stored in an ISO 8601-like string format, you can supply one or many format strings for datetime.strptime. The format strings will be analysed to determine how precise the resulting dates are expected to be.

from prefixdate import parse_format, parse_formats, Precision

date = parse_format('YEAR 2021', 'YEAR %Y')
assert date.precision == Precision.YEAR
assert date.text == '2021'

# You can try out multiple formats in sequence. The first non-empty prefix
# will be returned:
date = parse_formats('2021', ['%Y-%m-%d', '%Y-%m', '%Y'])
assert date.precision == Precision.YEAR
assert date.text == '2021'

Caveats

  • Datetimes are always converted to UTC and made naive (tzinfo stripped)
  • Does not process milliseconds yet.
  • Does not process invalid dates, like Feb 31st.
Owner
Friedrich Lindenberg
Data and software engineer, investigative support.
Friedrich Lindenberg
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022