TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

Overview

tf-metal-experiments

TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

Setup

This is tested on M1 series Apple Silicon SOC only.

TensorFlow 2.x

  1. Follow the official instructions from Apple here
  2. Test that your Metal GPU is working by running tf.config.list_physical_devices("GPU"), you should see 1 GPU present (it is not named). Later when you actually use the GPU, there will be a more informative printout that says Metal device set to: Apple M1 Max or similar.
  3. Now you should be ready to run any TF code that doesn't require external libraries.

HuggingFace Transformers library

If you want to play around with Transformer models (with TF Metal backend of course), you will need to install the HuggingFace Transformers library.

  1. Install the regex library (I don't know why it has to be like this, but yeah): python3 -m pip install --upgrade regex --no-use-pep517. You might need do xcode-select --install if the above command doesn't work.
  2. pip install transfomers ipywidgets

Experiments and Benchmarks

After some trial and error, some initial benchmarks for what should be the approx best capability of the M1 Max. For all the cases here, increasing batch size does not seem to increase the throughput.

Power draw also doesn't seem to be able to exceed 40W. Power draw from the GPU (averaged over 1 second) can be measured with sudo powermetrics --samplers gpu_power -i1000 -n1.

Model GPU BatchSize Throughput Power Memory
ResNet50 M1 Max 32c 64 135 img/sec 40W 13 GB
MobileNetV2 M1 Max 32c 128 352 img/sec 37W 15 GB
DistilBERT M1 Max 32c 64 120 seq/sec 35W 9 GB
BERTLarge M1 Max 32c 32 18 seq/sec 36W 14 GB

The benchmark scripts used are included in this repo.

Reference Benchmarks from RTX 3090

Model GPU BatchSize Throughput Power
ResNet50 3090 64 957 img/sec 300W
MobileNetV2 3090 128 1927 img/sec 310W
DistilBERT 3090 64 1040 seq/sec 310W
BERTLarge 3090 32 164 seq/sec 320W

For 3090, same script is used, but additional optimization that leverage hardware (Tensor Core) and software (XLA compiler) not present/working on M1 is added. This corresponds to the following code segment added:

from tensorflow.keras import mixed_precision
tf.config.optimizer.set_jit(True)
policy = mixed_precision.Policy('mixed_float16')
mixed_precision.set_global_policy(policy)
physical_devices = tf.config.list_physical_devices('GPU')

Also note that the 3090 is likely to perform better at larger batch sizes.

Measuring Achievable TFLOPS

We can use TF to write a matrix multiplication benchmark to try and estimate what is the max compute performance we can get out of a M1 Max. It seems we can get around ~8 TFLOPS for large enough problem (GEMM) sizes.

The plot can be generated using tflops_sweep.py.

Note that FP64 and FP16 performance appears to be non-existent. (the code automatically runs on CPU if FP64 or FP16 is specified as data type)

Owner
Timothy Liu
Deep Learning stuff and Open Source Enthusiast @OpenSUTD
Timothy Liu
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023