ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

Overview

ImageBART

NeurIPS 2021

teaser
Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer
* equal contribution

arXiv | BibTeX | Poster

Requirements

A suitable conda environment named imagebart can be created and activated with:

conda env create -f environment.yaml
conda activate imagebart

Get the Models

We provide pretrained weights and hyperparameters for models trained on the following datasets:

Download the respective files and extract their contents to a directory ./models/.

Moreover, we provide all the required VQGANs as a .zip at https://ommer-lab.com/files/vqgan.zip, which contents have to be extracted to ./vqgan/.

Get the Data

Running the training configs or the inpainting script requires a dataset available locally. For ImageNet and FFHQ, see this repo's parent directory taming-transformers. The LSUN datasets can be conveniently downloaded via the script available here. We performed a custom split into training and validation images, and provide the corresponding filenames at https://ommer-lab.com/files/lsun.zip. After downloading, extract them to ./data/lsun. The beds/cats/churches subsets should also be placed/symlinked at ./data/lsun/bedrooms/./data/lsun/cats/./data/lsun/churches, respectively.

Inference

Unconditional Sampling

We provide a script for sampling from unconditional models trained on the LSUN-{bedrooms,bedrooms,cats}- and FFHQ-datasets.

FFHQ

On the FFHQ dataset, we provide two distinct pretrained models, one with a chain of length 4 and a geometric noise schedule as proposed by Sohl-Dickstein et al. [1] , and another one with a chain of length 2 and a custom schedule. These models can be started with

CUDA_VISIBLE_DEVICES=<gpu_id> streamlit run scripts/sample_imagebart.py configs/sampling/ffhq/<config>

LSUN

For the models trained on the LSUN-datasets, use

CUDA_VISIBLE_DEVICES=<gpu_id> streamlit run scripts/sample_imagebart.py configs/sampling/lsun/<config>

Class Conditional Sampling on ImageNet

To sample from class-conditional ImageNet models, use

CUDA_VISIBLE_DEVICES=<gpu_id> streamlit run scripts/sample_imagebart.py configs/sampling/imagenet/<config>

Image Editing with Unconditional Models

We also provide a script for image editing with our unconditional models. For our FFHQ-model with geometric schedule this can be started with

CUDA_VISIBLE_DEVICES=<gpu_id> streamlit run scripts/inpaint_imagebart.py configs/sampling/ffhq/ffhq_4scales_geometric.yaml

resulting in samples similar to the following. teaser

Training

In general, there are two options for training the autoregressive transition probabilities of the reverse Markov chain: (i) train them jointly, taking into account a weighting of the individual scale contributions, or (ii) train them independently, which means that each training process optimizes a single transition and the scales must be stacked after training. We conduct most of our experiments using the latter option, but provide configurations for both cases.

Training Scales Independently

For training scales independently, each transition requires a seperate optimization process, which can started via

CUDA_VISIBLE_DEVICES=
   
     python main.py --base configs/
    /
     
      .yaml -t --gpus 0, 

     
   

We provide training configs for a four scale training of FFHQ using a geometric schedule, a four scale geometric training on ImageNet and various three-scale experiments on LSUN. See also the overview of our pretrained models.

Training Scales Jointly

For completeness, we also provide a config to run a joint training with 4 scales on FFHQ. Training can be started by running

CUDA_VISIBLE_DEVICES=
   
     python main.py --base configs/ffhq/ffhq_4_scales_joint-training.yaml -t --gpus 0, 

   

Shout-Outs

Many thanks to all who make their work and implementations publicly available. For this work, these were in particular:

teaser

References

[1] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S.. (2015). Deep Unsupervised Learning using Nonequilibrium Thermodynamics. Proceedings of the 32nd International Conference on Machine Learning

Bibtex

@article{DBLP:journals/corr/abs-2108-08827,
  author    = {Patrick Esser and
               Robin Rombach and
               Andreas Blattmann and
               Bj{\"{o}}rn Ommer},
  title     = {ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive
               Image Synthesis},
  journal   = {CoRR},
  volume    = {abs/2108.08827},
  year      = {2021}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021