Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

Related tags

Deep LearningProMo
Overview

ProMo (Prosody Morph)

https://travis-ci.org/timmahrt/ProMo.svg?branch=master https://coveralls.io/repos/github/timmahrt/ProMo/badge.svg?branch=master https://img.shields.io/badge/license-MIT-blue.svg?

Questions? Comments? Feedback? Chat with us on gitter!

Join the chat at https://gitter.im/pythonProMo/Lobby

A library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

This library can be used to resynthesize pitch in natural speech using pitch contours taken from other speech samples, generated pitch contours, or through algorithmic manipulations of the source pitch contour.

1   Common Use Cases

What can you do with this library?

Apply the pitch or duration from one speech sample to another.

  • alignment happens both in time and in hertz

    • after the morph process, the source pitch points will be at the same absolute pitch and relative time as they are in the target file
    • time is relative to the start and stop time of the interval being considered (e.g. the pitch value at 80% of the duration of the interval). Relative time is used so that the source and target files don't have to be the same length.
    • temporal morphing is a minor effect if the sampling frequency is high but it can be significant when, for example, using a stylized pitch contour with few pitch samples.
  • modifications can be done between entire wav files or between corresponding intervals as specified in a textgrid or other annotation (indicating the boundaries of words, stressed vowels, etc.)

    • the larger the file, the less useful the results are likely to be without using a transcript of some sort
    • the transcripts do not have to match in lexical content, only in the number of intervals (same number of words or phones, etc.)
  • modifications can be scaled (it is possible to generate a wav file with a pitch contour that is 30% or 60% between the source and target contours).

  • can also morph the pitch range and average pitch independently.

  • resynthesis is performed by Praat.

  • pitch can be obtained from praat (such as by using praatio) or from other sources (e.g. ESPS getF0)

  • plots of the resynthesis (such as the ones below) can be generated

2   Illustrative example

Consider the phrase "Mary rolled the barrel". In the first recording (examples/mary1.wav), "Mary rolled the barrel" was said in response to a question such as "Did John roll the barrel?". On the other hand, in the second recording (examples/mary2.wav) the utterance was said in response to a question such as "What happened yesterday".

"Mary" in "mary1.wav" is produced with more emphasis than in "mary2.wav". It is longer and carries a more drammatic pitch excursion. Using ProMo, we can make mary1.wav spoken similar to mary2.wav, even though they were spoken in a different way and by different speakers.

Duration and pitch carry meaning. Change these, and you can change the meaning being conveyed.

Note that modifying pitch and duration too much can introduce artifacts. Such artifacts can be heard even in pitch morphing mary1.wav to mary2.wav.

Pitch morphing (examples/pitch_morph_example.py):

The following image shows morphing of pitch from mary1.wav to mary2.wav on a word-by-word level in increments of 33% (33%, 66%, 100%). Note that the morph adjusts the temporal dimension of the target signal to fit the duration of the source signal (the source and generated contours are equally shorter than the target contour). This occurs at the level of the file unless the user specifies an equal number of segments to align in time (e.g. using word-level transcriptions, as done here, or phone-level transcriptions, etc.)

examples/files/mary1_mary2_f0_morph.png

With the ability to morph pitch range and average pitch, it becomes easier to morph contours produced by different speakers:

The following image shows four different pitch manipulations. On the upper left is the raw morph. Notice that final output (black line) is very close to the target. Differences stem from duration differences.

However, the average pitch and pitch range are qualities of speech that can signify differences in gender in addition to other aspects of speaker identity. By resetting the average pitch and pitch range to that of the source, it is possible to morph the contour while maintaining aspects of the source speaker's identity.

The image in the upper right contains a morph followed by a reset of the average pitch to the source speaker's average pitch. In the bottom right a morph followed by a reset of the speaker's pitch range. In the bottom right pitch range was reset and then the speaker's average pitch was reset.

The longer the speech sample, the more representative the pitch range and mean pitch will be of the speaker. In this example both are skewed higher by the pitch accent on the first word.

Here the average pitch of the source (a female speaker) is much higher than the target (a male speaker) and the resulting morph sounds like it comes from a different speaker than the source or target speakers. The three recordings that involve resetting pitch range and/or average pitch sound much more natural.

examples/files/mary1_mary2_f0_morph_compare.png

Duration morphing (examples/duration_manipulation_example.py):

The following image shows morphing of duration from mary1.wav to mary2.wav on a word-by-word basis in increments of 33% (33%, 66%, 100%). This process can operate over an entire file or, similar to pitch morphing, with annotated segments, as done in this example.

examples/files/mary1_mary2_dur_morph.png

3   Tutorials

Tutorials for learning about prosody manipulation and how to use ProMo are available.

Tutorial 1.1: Intro to ProMo

Tutorial 1.2: Pitch manipulation tutorial

4   Major revisions

Ver 1.3 (May 29, 2017)

  • added tutorials
  • f0Morph() can now exclude certain regions from the morph process if desired

Ver 1.2 (January 27, 2017)

  • added code for reshaping pitch accents (shift alignment, add plateau, or change height)

Ver 1.1 (February 22, 2016)

  • f0 morph code for modifying speaker pitch range and average pitch
  • (October 20, 2016) Added integration tests with travis CI and coveralls support.

Ver 1.0 (January 19, 2016)

  • first public release.

Beta (July 1, 2013)

  • first version which was utilized in my dissertation work

5   Requirements

Python 2.7.* or above

Python 3.3.* or above (or below, probably)

My praatIO library is used extensively and can be downloaded here

Matplotlib is needed if you want to plot graphs. Matplotlib website

Scipy is needed if you want to use interpolation--typically if you have stylized pitch contours (in praat PitchTier format, for example) that you want to use in your morphing). Scipy website

Matplotlib and SciPy are non-trivial to install, as they depends on several large packages. You can visit their websites for more information. I recommend the following instructions to install matplotlib which uses python wheels. These will install all required libraries in one fell swoop.

On Mac, open a terminal and type:

python -m pip install matplotlib

python -m pip install scipy

On Windows, open a cmd or powershell window and type:

<<path to python>> -m pip install matplotlib

<<path to python>> -m pip install scipy

e.g. C:\python27\python.exe -m install matplotlib

Otherwise, to manually install, after downloading the source from github, from a command-line shell, navigate to the directory containing setup.py and type:

python setup.py install

If python is not in your path, you'll need to enter the full path e.g.:

C:\Python27\python.exe setup.py install

6   Usage

See /examples for example usages

7   Installation

If you on Windows, you can use the installer found here (check that it is up to date though) Windows installer

Promo is on pypi and can be installed or upgraded from the command-line shell with pip like so:

python -m pip install promo --upgrade

Otherwise, to manually install, after downloading the source from github, from a command-line shell, navigate to the directory containing setup.py and type:

python setup.py install

If python is not in your path, you'll need to enter the full path e.g.:

C:\Python36\python.exe setup.py install

8   Citing ProMo

If you use ProMo in your research, please cite it like so:

Tim Mahrt. ProMo: The Prosody-Morphing Library. https://github.com/timmahrt/ProMo, 2016.

9   Acknowledgements

Development of ProMo was possible thanks to NSF grant BCS 12-51343 to Jennifer Cole, José I. Hualde, and Caroline Smith and to the A*MIDEX project (n° ANR-11-IDEX-0001-02) to James Sneed German funded by the Investissements d'Avenir French Government program, managed by the French National Research Agency (ANR).

Owner
Tim
I write tools for working with speech data.
Tim
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022