Code for IntraQ, PyTorch implementation of our paper under review

Overview

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper

Requirements

Python >= 3.7.10

Pytorch == 1.7.1

Reproduce results

Stage1: Generate data.

cd data_generate

Please install all required package in requirements.txt.

"--save_path_head" in run_generate_cifar10.sh/run_generate_cifar100.sh is the path where you want to save your generated data pickle.

For cifar10/100

bash run_generate_cifar10.sh
bash run_generate_cifar100.sh

For ImageNet

"--save_path_head" in run_generate.sh is the path where you want to save your generated data pickle.

"--model" in run_generate.sh is the pre-trained model you want (also is the quantized model). You can use resnet18/mobilenet_w1/mobilenetv2_w1.

bash run_generate.sh

Stage2: Train the quantized network

cd ..
  1. Modify "qw" and "qa" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to select desired bit-width.

  2. Modify "dataPath" in cifar10_resnet20.hocon/cifar100_resnet20.hocon/imagenet.hocon to the real dataset path (for construct the test dataloader).

  3. Modify the "Path_to_data_pickle" in main_direct.py (line 122 and line 135) to the data_path and label_path you just generate from Stage1.

  4. Use the below commands to train the quantized network. Please note that the model that generates the data and the quantized model should be the same.

For cifar10/100

python main_direct.py --model_name resnet20_cifar10 --conf_path cifar10_resnet20.hocon --id=0

python main_direct.py --model_name resnet20_cifar100 --conf_path cifar100_resnet20.hocon --id=0

For ImageNet, you can choose the model by modifying "--model_name" (resnet18/mobilenet_w1/mobilenetv2_w1)

python main_direct.py --model_name resnet18 --conf_path imagenet.hocon --id=0

Evaluate pre-trained models

The pre-trained models and corresponding logs can be downloaded here

Please make sure the "qw" and "qa" in *.hocon, *.hocon, "--model_name" and "--model_path" are correct.

For cifar10/100

python test.py --model_name resnet20_cifar10 --model_path path_to_pre-trained model --conf_path cifar10_resnet20.hocon

python test.py --model_name resnet20_cifar100 --model_path path_to_pre-trained model --conf_path cifar100_resnet20.hocon

For ImageNet

python test.py --model_name resnet18/mobilenet_w1/mobilenetv2_w1 --model_path path_to_pre-trained model --conf_path imagenet.hocon

Results of pre-trained models are shown below:

Model Bit-width Dataset Top-1 Acc.
resnet18 W4A4 ImageNet 66.47%
resnet18 W5A5 ImageNet 69.94%
mobilenetv1 W4A4 ImageNet 51.36%
mobilenetv1 W5A5 ImageNet 68.17%
mobilenetv2 W4A4 ImageNet 65.10%
mobilenetv2 W5A5 ImageNet 71.28%
resnet-20 W3A3 cifar10 77.07%
resnet-20 W4A4 cifar10 91.49%
resnet-20 W3A3 cifar100 64.98%
resnet-20 W4A4 cifar100 48.25%
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022