Sparse Physics-based and Interpretable Neural Networks

Related tags

Deep LearningSPINN
Overview

Sparse Physics-based and Interpretable Neural Networks for PDEs

This repository contains the code and manuscript for research done on Sparse Physics-based and Interpretable Neural Networks for PDEs. More details are available in the following publication:

  • Amuthan A. Ramabathiran and Prabhu Ramachandran^, "SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs", Journal of Computational Physics, Volume 445, pages 110600, 2021 doi:10.1016/j.jcp.2021.110600. (^ Joint first author). arXiv:2102.13037.

Installation

Running the code in this repository requires a few pre-requisites to be set up. The Python packages required are in the requirements.txt. Here are some instructions to help you set these up:

  1. Setup a suitable Python distribution, using conda or a virtualenv.

  2. Clone this repository:

    $ git clone https://github.com/nn4pde/SPINN.git
    $ cd SPINN
  1. If you use conda, run the following from your Python environment:
    $ conda env create -f environment.yml
    $ conda activate spinn
  1. If you use a virtualenv or some other Python distribution and wish to use pip:
    $ pip install -r requirements.txt

Once you install the packages you should hopefully be able to run the examples. The examples all support live-plotting of the results. Matplotlib is required for the live plotting of any of the 1D problems and Mayavi is needed for any 2D/3D problems. These are already specified in the requirements.txt and environments.yml files.

Running the code

All the problems discussed in the paper are available in the code subdirectory. The supplementary text in the paper discusses the design of the code at a very high level. You can run any of the problems as follows:

  $ cd code
  $ python ode3.py -h

And this will provide a variety of help options that you can use. You can see the results live by doing:

  $ python ode3.py --plot

These require matlplotlib.

The 2D problems also feature live plotting with Mayavi if it is installed, for example:

  $ python advection1d.py --plot

You should see the solution as well as the computational nodes. Where applicable you can see an exact solution as a wireframe.

If you have a GPU and it is configured to work with PyTorch, you can use it like so:

  $ python poisson2d_irreg_dom.py --gpu

Generating the results

All the results shown in the paper are automated using the automan package which should already be installed as part of the above installation. This will perform all the required simulations (this can take a while) and also generate all the plots for the manuscript.

To learn how to use the automation, do this:

    $ python automate.py -h

By default the simulation outputs are in the outputs directory and the final plots for the paper are in manuscript/figures.

To generate all the figures in one go, run the following (this will take a while):

    $ python automate.py

If you wish to only run a particular set of problems and see those results you can do the following:

   $ python automate.py PROBLEM

where PROBLEM can be any of the demonstrated problems. For example:

  $ python automate.py ode1 heat cavity

Will only run those three problems. Please see the help output (-h) and look at the code for more details.

By default we do not need to use a GPU for the automation but if you have one, you can edit the automate.py and set USE_GPU = True to make use of your GPU where possible.

Building the paper

Once you have generated all the figures from the automation you can easily compile the manuscript. The manuscript is written with LaTeX and if you have that installed you may do the following:

$ cd manuscript
$ latexmk spinn_manuscript.tex -pdf
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021