Sparse Physics-based and Interpretable Neural Networks

Related tags

Deep LearningSPINN
Overview

Sparse Physics-based and Interpretable Neural Networks for PDEs

This repository contains the code and manuscript for research done on Sparse Physics-based and Interpretable Neural Networks for PDEs. More details are available in the following publication:

  • Amuthan A. Ramabathiran and Prabhu Ramachandran^, "SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs", Journal of Computational Physics, Volume 445, pages 110600, 2021 doi:10.1016/j.jcp.2021.110600. (^ Joint first author). arXiv:2102.13037.

Installation

Running the code in this repository requires a few pre-requisites to be set up. The Python packages required are in the requirements.txt. Here are some instructions to help you set these up:

  1. Setup a suitable Python distribution, using conda or a virtualenv.

  2. Clone this repository:

    $ git clone https://github.com/nn4pde/SPINN.git
    $ cd SPINN
  1. If you use conda, run the following from your Python environment:
    $ conda env create -f environment.yml
    $ conda activate spinn
  1. If you use a virtualenv or some other Python distribution and wish to use pip:
    $ pip install -r requirements.txt

Once you install the packages you should hopefully be able to run the examples. The examples all support live-plotting of the results. Matplotlib is required for the live plotting of any of the 1D problems and Mayavi is needed for any 2D/3D problems. These are already specified in the requirements.txt and environments.yml files.

Running the code

All the problems discussed in the paper are available in the code subdirectory. The supplementary text in the paper discusses the design of the code at a very high level. You can run any of the problems as follows:

  $ cd code
  $ python ode3.py -h

And this will provide a variety of help options that you can use. You can see the results live by doing:

  $ python ode3.py --plot

These require matlplotlib.

The 2D problems also feature live plotting with Mayavi if it is installed, for example:

  $ python advection1d.py --plot

You should see the solution as well as the computational nodes. Where applicable you can see an exact solution as a wireframe.

If you have a GPU and it is configured to work with PyTorch, you can use it like so:

  $ python poisson2d_irreg_dom.py --gpu

Generating the results

All the results shown in the paper are automated using the automan package which should already be installed as part of the above installation. This will perform all the required simulations (this can take a while) and also generate all the plots for the manuscript.

To learn how to use the automation, do this:

    $ python automate.py -h

By default the simulation outputs are in the outputs directory and the final plots for the paper are in manuscript/figures.

To generate all the figures in one go, run the following (this will take a while):

    $ python automate.py

If you wish to only run a particular set of problems and see those results you can do the following:

   $ python automate.py PROBLEM

where PROBLEM can be any of the demonstrated problems. For example:

  $ python automate.py ode1 heat cavity

Will only run those three problems. Please see the help output (-h) and look at the code for more details.

By default we do not need to use a GPU for the automation but if you have one, you can edit the automate.py and set USE_GPU = True to make use of your GPU where possible.

Building the paper

Once you have generated all the figures from the automation you can easily compile the manuscript. The manuscript is written with LaTeX and if you have that installed you may do the following:

$ cd manuscript
$ latexmk spinn_manuscript.tex -pdf
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023