A framework for joint super-resolution and image synthesis, without requiring real training data

Related tags

Deep LearningSynthSR
Overview

SynthSR

This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The method can also be configured to achieve denoising and bias field correction.

The network takes synthetic scans generated on the fly as inputs, and can be trained to regress either real or synthetic target scans. The synthetic scans are obtained by sampling a generative model building on the SynthSeg [1] package, which we really encourage you to have a look at!


In short, synthetic scans are generated at each mini-batch by: 1) randomly selecting a label map among of pool of training segmentations, 2) spatially deforming it in 3D, 3) sampling a Gaussian Mixture Model (GMM) conditioned on the deformed label map (see Figure 1 below), and 4) corrupting with a random bias field. This gives us a synthetic scan at high resolution (HR). We then simulate thick slice spacing by blurring and downsampling it to low resolution (LR). In SR, we then train a network to learn the mapping between LR data (possibly multimodal, hence the joint synthesis) and HR synthetic scans. Moreover If real images are available along with the training label maps, we can learn to regress the real images instead.


Training overview Figure 1: overview of SynthSR


Tutorials for Generation and Training

This repository contains code to train your own network for SR or joint SR and synthesis. Because the training function has a lot of options, we provide here some tutorials to familiarise yourself with the different training/generation parameters. We emphasise that we provide example training data along with these scripts: 5 preprocessed publicly available T1 scans at 1mm isotropic resolution [2] with corresponding label maps obtained with FreeSurfer [3]. The tutorials can be found in scripts, and they include:

  • Six generation scripts corresponding to different use cases (see Figure 2 below). We recommend to go through them all, (even if you're only interested in case 1), since we successively introduce different functionalities as we go through.

  • One training script, explaining the main training parameters.

  • One script explaining how to estimate the parameters governing the GMM, in case you wish to train a model on your own data.


Training overview Figure 2: Examples generated by running the tutorials on the provided data [2]. For each use case, we show the synhtetic images used as inputs to the network, as well as the regression target.


Content

  • SynthSR: this is the main folder containing the generative model and training function:

    • labels_to_image_model.py: builds the generative model.

    • brain_generator.py: contains the class BrainGenerator, which is a wrapper around the model. New images can simply be generated by instantiating an object of this class, and calling the method generate_image().

    • model_inputs.py: prepares the inputs of the generative model.

    • training.py: contains the function to train the network. All training parameters are explained there.

    • metrics_model.py: contains a Keras model that implements diffrent loss functions.

    • estimate_priors.py: contains functions to estimate the prior distributions of the GMM parameters.

  • data: this folder contains the data for the tutorials (T1 scans [2], corresponding FreeSurfer segmentations and some other useful files)

  • script: additionally to the tutorials, we also provide a script to launch trainings from the terminal

  • ext: contains external packages.


Requirements

This code relies on several external packages (already included in \ext):

  • lab2im: contains functions for data augmentation, and a simple version of the generative model, on which we build to build label_to_image_model [1]

  • neuron: contains functions for deforming, and resizing tensors, as well as functions to build the segmentation network [4,5].

  • pytool-lib: library required by the neuron package.

All the other requirements are listed in requirements.txt. We list here the most important dependencies:

  • tensorflow-gpu 2.0
  • tensorflow_probability 0.8
  • keras > 2.0
  • cuda 10.0 (required by tensorflow)
  • cudnn 7.0
  • nibabel
  • numpy, scipy, sklearn, tqdm, pillow, matplotlib, ipython, ...

Citation/Contact

This repository contains the code related to a submission that is still under review.

If you have any question regarding the usage of this code, or any suggestions to improve it you can contact us at:
[email protected]


References

[1] A Learning Strategy for Contrast-agnostic MRI Segmentation
Benjamin Billot, Douglas N. Greve, Koen Van Leemput, Bruce Fischl, Juan Eugenio Iglesias*, Adrian V. Dalca*
*contributed equally
MIDL 2020

[2] A novel in vivo atlas of human hippocampal subfields usinghigh-resolution 3 T magnetic resonance imaging
J. Winterburn, J. Pruessner, S. Chavez, M. Schira, N. Lobaugh, A. Voineskos, M. Chakravarty
NeuroImage (2013)

[3] FreeSurfer
Bruce Fischl
NeuroImage (2012)

[4] Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
CVPR 2018

[5] Unsupervised Data Imputation via Variational Inference of Deep Subspaces
Adrian V. Dalca, John Guttag, Mert R. Sabuncu
Arxiv preprint (2019)

Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022