Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

Related tags

Deep LearningUPMT
Overview

UPMT

Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

See main.py as an example:

from model import PopMusicTransformer
import argparse
import tensorflow as tf
import os
import pickle
import numpy as np
from glob import glob
parser = argparse.ArgumentParser(description='')
parser.add_argument('--prompt_path', dest='prompt_path', default='./test/prompt/test_input.mid', help='path of prompt')
parser.add_argument('--output_path', dest='output_path', default='./test/output/test_generate.mid', help='path of the output')
parser.add_argument('--favorite_path', dest='favorite_path', default='./test/favorite/test_favorite.mid', help='path of favorite')
parser.add_argument('--trainingdata_path', dest='trainingdata_path', default='./test/data/training.pickle', help='path of favorite training data')
parser.add_argument('--output_checkpoint_folder', dest='output_checkpoint_folder', default='./test/checkpoint/', help='path of favorite')
parser.add_argument('--alpha', default=0.1, help='weight of events')
parser.add_argument('--temperature', default=300, help='sampling temperature')
parser.add_argument('--topk', default=5, help='sampling topk')
parser.add_argument('--smpi', default=[-2,-2,-1,-2,-2,2,2,5], help='signature music pattern interval')

parser.add_argument('--type', dest='type', default='generateno', help='generateno or pretrain or prepare')

args = parser.parse_args()


def main(_):

    tfconfig = tf.ConfigProto(allow_soft_placement=True)
    with tf.Session(config=tfconfig) as sess:
        if args.type == 'prepare':
            midi_paths = glob('./test/favorite'+'/*.mid')
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.prepare_data(
                        midi_paths=midi_paths)    
        elif args.type == 'generateno':
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=False)
            model.generate_noteon(
                        temperature=float(args.temperature),
                        topk=int(args.topk),
                        output_path=args.output_path,  
                        smpi= np.array(args.smpi),
                        prompt=args.prompt_path)
        elif args.type =='pretrain':
            training_data = pickle.load(open(args.trainingdata_path,"rb"))
            if not os.path.exists(args.output_checkpoint_folder):
                os.mkdir(args.output_checkpoint_folder)
            model = PopMusicTransformer(
                checkpoint='./test/model',
                is_training=True)
            model.finetune(
                training_data=training_data,
                alpha=float(args.alpha),
                favoritepath=args.favorite_path,
                output_checkpoint_folder=args.output_checkpoint_folder)

if __name__ == '__main__':
    tf.app.run()

Thanks https://github.com/YatingMusic/remi for the open source.

Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022