Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Overview

Divide and Remaster Utility Tools

CFP Icon

Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

The DnR dataset is build from three, well-established, audio datasets; Librispeech, Free Music Archive (FMA), and Freesound Dataset 50k (FSD50K). We offer our dataset in both 16kHz and 44.1kHz sampling-rate along time-stamped annotations for each of the classes (genre for 'music', audio-tags for 'sound-effects', and transcription for 'speech'). We provide below more informations on how the dataset is build and what it's consists of exactly. We also go over the process of building the dataset from scratch for the cases it needs to.



Dataset Overview

The Divide and Remaster (DnR) dataset is a dataset aiming at providing research support for a relatively unexplored case of source separation with mixtures involving music, speech, and sound-effects (SFX) as their sources. The dataset is build from three, well-established, datasets. Consequently if one wants to build DnR from scratch, the aforementioned datasets will have to be downloaded first. Alternatively, DnR is also available on Zenodo

Get the DnR Dataset

In order to obtain DnR, several options are available depending on the task at hand:

Download

  • DnR-HQ (44.1kHz) is available on Zenodo at the following or simply run:
link to the Zenodo dataset coming soon ...
  • Alternatively, if DnR-16kHz is needed, please first download DnR-HQ locally. You can then downsample the dataset (either in-place or not) by cloning the dnr-utils repository and running:
python dnr_utils.py --task=downsample --inplace=True

Building DnR From Scratch

In the section, we go over the DnR building process. Since DnR is directly drawn from *FSD50K*, *LibriSpeech*/*LibriVox*, and *FMA, we first need to download these datasets. Please head to the following links for more details on how to get them:

Datasets Downloads

FSD50K
FMA-Medium Set
LibriSpeech/LibriVox



Please note that for FMA, the medium set only is required. In addition to the audio files, the metadata should also be downloaded. For LibriSpeech DnR uses dev-clean, test-clean, and train-clean-100. DnR will use the folder structure as well as metadata from LibriSpeech, but ultimately will build the LibriSpeech-HQ dataset off the original LibriVox mp3s, which is why we need them both for building DnR.

After download, all four datasets are expected to be found in the same root directory. Our root tree may look something like that. As the standardization script will look for specific file name, please make sure that all directory names conform to the ones described below:

root
├── fma-medium
│   ├── fma_metadata
│   │   ├── genres.csv
│   │   └── tracks.csv
│   ├── 008
│   ├── 008
│   ├── 009
│   └── 010
│   └── ...
├── fsd50k
│   ├── FSD50K.dev_audio
│   ├── FSD50K.eval_audio
│   └── FSD50K.ground_truth
│   │   ├── dev.csv
│   │   ├── eval.csv
│   │   └── vocabulary.csv
├── librispeech
│   ├── dev-clean
│   ├── test-clean
│   └── train-clean-100
└── librivox
    ├── 14
    ├── 16
    └── 17
    └── ...

Datasets Standardization

Once all four datasets are downloaded, some standardization work needs to be taken care of. The standardization process can be be executed by running standardization.py, which can be found in the dnr-utils repository. Prior to running the script you may want to install all the necessary dependencies included as part of the requirement.txt with pip install -r requirements.txt. Note: pydub uses ffmpeg under its hood, a system install of fmmpeg is thus required. Please see pydub's install instructions for more information. The standardization command may look something like:

python standardization.py --fsd50k-path=./FSD50K --fma-path=./FMA --librivox-path=./LibriVox --librispeech-path=./LibiSpeech  --dest-dir=./dest --validate-audio=True

DnR Dataset Compilation

Once the three resulting datasets are standardized, we are ready to finally compile DnR. At this point you should already have cloned the dnr-utils repository, which contains two key files:

  • config.py contains some configuration entries needed by the main script builder. You want to set all the appropriate paths pointing to your local datasets and ground truth files in there.
  • The compilation for a given set (here, train, val, and eval) can be executed with compile_dataset.py, for example by running the following commands for each set:
python compile_dataset.py with cfg.train
python compile_dataset.py with cfg.val
python compile_dataset.py with cfg.eval

Known Issues

Some known bugs and issues that we're aware. if not listed below, feel free to open a new issue here:

  • If building from scratch, pydub will fail at reading 15 mp3 files from the FMA medium-set and will return the following error: mp3 @ 0x559b8b084880] Failed to read frame size: Could not seek to 1026.

  • If building DnR from scratch, the script may return the following error, coming from pyloudnorm: Audio must be have length greater than the block size. That's because some audio segment, especially SFX events, may be shorter than 0.2 seconds, which is the minimum sample length (window) required by pyloudnorm for normalizing the audio. We just ignore these segments.


Contact and Support

Have an issue, concern, or question about DnR or its utility tools ? If so, please open an issue here

For any other inquiries, feel free to shoot an email at: [email protected], my name is Darius Petermann ;)


Owner
Darius Petermann
Signal Processing and Machine Learning for Audio
Darius Petermann
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022