HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Related tags

Deep LearningHPRNet
Overview

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Official PyTroch implementation of HPRNet.

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation,
Nermin Samet, Emre Akbas,
Under review. (arXiv pre-print)

Highlights

  • HPRNet is a bottom-up, one-stage and hierarchical keypoint regression method for whole-body pose estimation.
  • HPRNet has the best performance among bottom-up methods for all the whole-body parts.
  • HPRNet achieves SOTA performance for the face (76.0 AP) and hand (51.2 AP) keypoint estimation.
  • Unlike two-stage methods, HPRNet predicts whole-body pose in a constant time independent of the number of people in an image.

COCO-WholeBody Keypoint Estimation Results

Model Body AP Foot AP Face AP Hand AP Whole-body AP Download
HPRNet (DLA) 55.2 / 57.1 49.1 / 50.7 74.6 / 75.4 47.0 / 48.4 31.5 / 32.7 model
HPRNet (Hourglass) 59.4 / 61.1 53.0 / 53.9 75.4 / 76.0 50.4 / 51.2 34.8 / 34.9 model
  • Results are presented without and with test time flip augmentation respectively.
  • All models are trained on COCO-WholeBody train2017 and evaluated on val2017.
  • The models can be downloaded directly from Google drive.

Installation

  1. [Optional but recommended] create a new conda environment.

    conda create --name HPRNet python=3.7
    

    And activate the environment.

    conda activate HPRNet
    
  2. Clone the repo:

    HPRNet_ROOT=/path/to/clone/HPRNet
    git clone https://github.com/nerminsamet/HPRNet $HPRNet_ROOT
    
  3. Install PyTorch 1.4.0:

    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  4. Install the requirements:

    pip install -r requirements.txt
    
  5. Compile DCNv2 (Deformable Convolutional Networks):

    cd $HPRNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    

Dataset preparation

  • Download the images (2017 Train, 2017 Val) from coco website.

  • Download train and val annotation files.

    ${COCO_PATH}
    |-- annotations
        |-- coco_wholebody_train_v1.0.json
        |-- coco_wholebody_val_v1.0.json
    |-- images
        |-- train2017
        |-- val2017 
    

Evaluation and Training

  • You could find all the evaluation and training scripts in the experiments folder.
  • For evaluation, please download the pretrained models you want to evaluate and put them in HPRNet_ROOT/models/.
  • In the case that you don't have 4 GPUs, you can follow the linear learning rate rule to adjust the learning rate.
  • If the training is terminated before finishing, you can use the same command with --resume to resume training.

Acknowledgement

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

License

HPRNet is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find HPRNet useful for your research, please cite our paper as follows:

N. Samet, E. Akbas, "HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation", arXiv, 2021.

BibTeX entry:

@misc{hprnet,
      title={HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation}, 
      author={Nermin Samet and Emre Akbas},
      year={2021}, 
}
Owner
Nermin Samet
PhD candidate
Nermin Samet
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022