Sequence-to-Sequence learning using PyTorch

Overview

Seq2Seq in PyTorch

This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train and infer using them.

Using this code you can train:

  • Neural-machine-translation (NMT) models
  • Language models
  • Image to caption generation
  • Skip-thought sentence representations
  • And more...

Installation

git clone --recursive https://github.com/eladhoffer/seq2seq.pytorch
cd seq2seq.pytorch; python setup.py develop

Models

Models currently available:

Datasets

Datasets currently available:

All datasets can be tokenized using 3 available segmentation methods:

  • Character based segmentation
  • Word based segmentation
  • Byte-pair-encoding (BPE) as suggested by bpe with selectable number of tokens.

After choosing a tokenization method, a vocabulary will be generated and saved for future inference.

Training methods

The models can be trained using several methods:

  • Basic Seq2Seq - given encoded sequence, generate (decode) output sequence. Training is done with teacher-forcing.
  • Multi Seq2Seq - where several tasks (such as multiple languages) are trained simultaneously by using the data sequences as both input to the encoder and output for decoder.
  • Image2Seq - used to train image to caption generators.

Usage

Example training scripts are available in scripts folder. Inference examples are available in examples folder.

  • example for training a transformer on WMT16 according to original paper regime:
DATASET=${1:-"WMT16_de_en"}
DATASET_DIR=${2:-"./data/wmt16_de_en"}
OUTPUT_DIR=${3:-"./results"}

WARMUP="4000"
LR0="512**(-0.5)"

python main.py \
  --save transformer \
  --dataset ${DATASET} \
  --dataset-dir ${DATASET_DIR} \
  --results-dir ${OUTPUT_DIR} \
  --model Transformer \
  --model-config "{'num_layers': 6, 'hidden_size': 512, 'num_heads': 8, 'inner_linear': 2048}" \
  --data-config "{'moses_pretok': True, 'tokenization':'bpe', 'num_symbols':32000, 'shared_vocab':True}" \
  --b 128 \
  --max-length 100 \
  --device-ids 0 \
  --label-smoothing 0.1 \
  --trainer Seq2SeqTrainer \
  --optimization-config "[{'step_lambda':
                          \"lambda t: { \
                              'optimizer': 'Adam', \
                              'lr': ${LR0} * min(t ** -0.5, t * ${WARMUP} ** -1.5), \
                              'betas': (0.9, 0.98), 'eps':1e-9}\"
                          }]"
  • example for training attentional LSTM based model with 3 layers in both encoder and decoder:
python main.py \
  --save de_en_wmt17 \
  --dataset ${DATASET} \
  --dataset-dir ${DATASET_DIR} \
  --results-dir ${OUTPUT_DIR} \
  --model RecurrentAttentionSeq2Seq \
  --model-config "{'hidden_size': 512, 'dropout': 0.2, \
                   'tie_embedding': True, 'transfer_hidden': False, \
                   'encoder': {'num_layers': 3, 'bidirectional': True, 'num_bidirectional': 1, 'context_transform': 512}, \
                   'decoder': {'num_layers': 3, 'concat_attention': True,\
                               'attention': {'mode': 'dot_prod', 'dropout': 0, 'output_transform': True, 'output_nonlinearity': 'relu'}}}" \
  --data-config "{'moses_pretok': True, 'tokenization':'bpe', 'num_symbols':32000, 'shared_vocab':True}" \
  --b 128 \
  --max-length 80 \
  --device-ids 0 \
  --trainer Seq2SeqTrainer \
  --optimization-config "[{'epoch': 0, 'optimizer': 'Adam', 'lr': 1e-3},
                          {'epoch': 6, 'lr': 5e-4},
                          {'epoch': 8, 'lr':1e-4},
                          {'epoch': 10, 'lr': 5e-5},
                          {'epoch': 12, 'lr': 1e-5}]" \
Owner
Elad Hoffer
Elad Hoffer
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022