FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

Related tags

Deep LearningFAST
Overview

FAST (Fusion Abundant multi-Source data download Terminal)

介绍

FAST 针对目前GNSS数据下载步骤繁琐、下载速度慢等问题,开发了一套较为完备的融合多源数据下载终端软件——FAST。
软件目前包含GNSS科研学习过程中绝大部分所需的数据源,采用并行下载的方式极大的提升了下载的效率。

Git地址

软件特点

  • 多平台:同时支持windows与linux系统;
  • 资源丰富:基本囊括了GNSS科研学习中所需的数据源,目前支持15个大类、62个小类,具体支持数据见数据支持
  • 快速:软件采用并行下载方式,在命令行参数运行模式可自行指定下载线程数,经测试下载100天的brdc+igs+clk文件只需要48.93s!
  • 易拓展:如需支持更多数据源,可在FTP_Source.py、GNSS_TYPE.py中指定所需的数据与数据源;
  • 简单易行:程序有引导下载模式与命令行带参数运行模式两种方式下载,直接运行程序便可进入引导下载模式,命令行带参数运行FAST -h可查看带参数运行模式介绍;
  • 灵活:在带参数运行模式下,用户可灵活指定下载类型、下载位置、下载时间、是否解压、线程数等,可根据自我需求编写bat、shell、python等脚本运行;
  • 轻便:windows程序包仅有18.9 MB,Liunx程序包仅有6.63 MB.

安装教程

  • Windows系统下仅需解压程序包即可直接运行,CMD运行FAST.exe -h可查看带参数运行模式介绍;
  • Linux系统下需安装先导软件wget\lftp\ncompress\python3,以Ubuntu系统为例,于终端中输入以下代码:
apt-get install wget
apt-get install lftp
apt-get install ncompress
apt-get install python3

安装后如windows系统下相同可直接运行程序,或将程序配置至环境变量中。

使用说明

引导下载模式Windows系统双击运行FAST.exe便可进入引导下载,若为Linux系统终端输入FAST运行即可:

  1. 以下载武汉大学多系统精密星历为例,在一级选择目录中选择SP3,即为输入2后回车;
    一级目录

  2. 选择MGEX_WUH_sp3即为输入6并回车,其中MGEX代表多系统,WUH代表武汉大学IGS数据处理中心,SP3代表精密星历; 二级目录

  3. 根据引导输入时间,回车完成输入; 输入时间

  4. 下载完成,根据提示直接回车完成解压或者输入任意字符回车不解压; 下载完成 解压完成

  5. 根据提示输入y再次进入引导或退出;
    在此引导

命令行带参数运行模式Windows系统CMD或power shell运行FAST.exe -h可查看命令行运行帮助,若为Linux系统终端输入FAST -h查看帮助:

  FAST : Fusion Abundant multi-Source data download Terminal
  ©Copyright 2022.01 @ Chang Chuntao
  PLEASE DO NOT SPREAD WITHOUT PERMISSION OF THE AUTHOR !

  Usage: FAST 

  Where the following are some of the options avaiable:

  -v,  --version                   display the version of GDD and exit
  -h,  --help                      print this help
  -t,  --type                      GNSS type, if you need to download multiple data,
                                   Please separate characters with " , "
                                   Example : GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk
  -l,  --loc                       which folder is the download in
  -y,  --year                      where year are the data to be download
  -d,  --day                       where day are the data to be download
  -o,  --day1                      where first day are the data to be download
  -e,  --day2                      where last day are the data to be download
  -m,  --month                     where month are the data to be download
  -u,  --uncomprss Y/N             Y - unzip file (default)
                                   N - do not unzip files
  -f,  --file                      site file directory,The site names in the file are separated by spaces.
                                   Example : bjfs irkj urum
  -p   --process                   number of threads (default 12)

  Example: FAST -t MGEX_IGS_atx
           FAST -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk -y 2022 -d 22 -p 30
           FAST -t MGEX_WUH_sp3 -y 2022 -d 22 -u N -l D:\code\CDD\Example
           FAST -t MGEX_IGS_rnx -y 2022 -d 22 -f D:\code\cdd\mgex.txt
           FAST -t IVS_week_snx -y 2022 -m 1

数据支持

  1. BRDC : GPS_brdc / MGEX_brdm

  2. SP3 : GPS_IGS_sp3 / GPS_IGR_sp3 / GPS_IGU_sp3 / GPS_GFZ_sp3 / GPS_GRG_sp3
    MGEX_WUH_sp3 / MGEX_WUHU_sp3 / MGEX_GFZ_sp3 / MGEX_COD_sp3
    MGEX_SHA_sp3 / MGEX_GRG_sp3 / GLO_IGL_sp3

  3. RINEX :GPS_IGS_rnx / MGEX_IGS_rnx / GPS_USA_cors / GPS_HK_cors / GPS_EU_cors
    GPS_AU_cors

  4. CLK : GPS_IGS_clk / GPS_IGR_clk / GPS_IGU_clk / GPS_GFZ_clk / GPS_GRG_clk GPS_IGS_clk_30s MGEX_WUH_clk / MGEX_COD_clk / MGEX_GFZ_clk / MGEX_GRG_clk / WUH_PRIDE_clk

  5. ERP : IGS_erp / WUH_erp / COD_erp / GFZ_erp

  6. BIA : MGEX_WHU_bia / GPS_COD_bia / MGEX_COD_bia / MGEX_GFZ_bia

  7. ION : IGS_ion / WUH_ion / COD_ion

  8. SINEX : IGS_day_snx / IGS_week_snx / IVS_week_snx / ILS_week_snx / IDS_week_snx

  9. CNES_AR : CNES_post / CNES_realtime

  10. ATX : MGEX_IGS_atx

  11. DCB : GPS_COD_dcb / MGEX_CAS_dcb / MGEX_WHU_OSB / P1C1 / P1P2 / P2C2

  12. Time_Series : IGS14_TS_ENU / IGS14_TS_XYZ / Series_TS_Plot

  13. Velocity_Fields : IGS14_Venu / IGS08_Venu / PLATE_Venu

  14. SLR : HY_SLR / GRACE_SLR / BEIDOU_SLR

  15. OBX : GPS_COD_obx / GPS_GRG_obx / MGEX_WUH_obx / MGEX_COD_obx / MGEX_GFZ_obx

  16. TRO : IGS_zpd / COD_tro / JPL_tro / GRID_1x1_VMF3 / GRID_2.5x2_VMF1 / GRID_5x5_VMF3

参与贡献

  1. 常春涛@中国测绘科学研究院
    程序思路、主程序编写、文档编写、程序测试

  2. 蒋科材博士后@武汉大学
    程序思路、并行计算处理思路

  3. 慕任海博士@武汉大学
    程序思路、程序编写、程序测试

  4. 李博博士@辽宁工程技术大学&中国测绘科学研究院
    程序测试、文档编写、节点汇总

  5. 李勇熹@兰州交通大学&中国测绘科学研究院
    程序测试、节点汇总

  6. 曹多明@山东科技大学&中国测绘科学研究院
    程序测试、节点汇总

Owner
ChangChuntao
QQ 1252443496 WECHAT amst-jazz
ChangChuntao
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022