FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

Related tags

Deep LearningFAST
Overview

FAST (Fusion Abundant multi-Source data download Terminal)

介绍

FAST 针对目前GNSS数据下载步骤繁琐、下载速度慢等问题,开发了一套较为完备的融合多源数据下载终端软件——FAST。
软件目前包含GNSS科研学习过程中绝大部分所需的数据源,采用并行下载的方式极大的提升了下载的效率。

Git地址

软件特点

  • 多平台:同时支持windows与linux系统;
  • 资源丰富:基本囊括了GNSS科研学习中所需的数据源,目前支持15个大类、62个小类,具体支持数据见数据支持
  • 快速:软件采用并行下载方式,在命令行参数运行模式可自行指定下载线程数,经测试下载100天的brdc+igs+clk文件只需要48.93s!
  • 易拓展:如需支持更多数据源,可在FTP_Source.py、GNSS_TYPE.py中指定所需的数据与数据源;
  • 简单易行:程序有引导下载模式与命令行带参数运行模式两种方式下载,直接运行程序便可进入引导下载模式,命令行带参数运行FAST -h可查看带参数运行模式介绍;
  • 灵活:在带参数运行模式下,用户可灵活指定下载类型、下载位置、下载时间、是否解压、线程数等,可根据自我需求编写bat、shell、python等脚本运行;
  • 轻便:windows程序包仅有18.9 MB,Liunx程序包仅有6.63 MB.

安装教程

  • Windows系统下仅需解压程序包即可直接运行,CMD运行FAST.exe -h可查看带参数运行模式介绍;
  • Linux系统下需安装先导软件wget\lftp\ncompress\python3,以Ubuntu系统为例,于终端中输入以下代码:
apt-get install wget
apt-get install lftp
apt-get install ncompress
apt-get install python3

安装后如windows系统下相同可直接运行程序,或将程序配置至环境变量中。

使用说明

引导下载模式Windows系统双击运行FAST.exe便可进入引导下载,若为Linux系统终端输入FAST运行即可:

  1. 以下载武汉大学多系统精密星历为例,在一级选择目录中选择SP3,即为输入2后回车;
    一级目录

  2. 选择MGEX_WUH_sp3即为输入6并回车,其中MGEX代表多系统,WUH代表武汉大学IGS数据处理中心,SP3代表精密星历; 二级目录

  3. 根据引导输入时间,回车完成输入; 输入时间

  4. 下载完成,根据提示直接回车完成解压或者输入任意字符回车不解压; 下载完成 解压完成

  5. 根据提示输入y再次进入引导或退出;
    在此引导

命令行带参数运行模式Windows系统CMD或power shell运行FAST.exe -h可查看命令行运行帮助,若为Linux系统终端输入FAST -h查看帮助:

  FAST : Fusion Abundant multi-Source data download Terminal
  ©Copyright 2022.01 @ Chang Chuntao
  PLEASE DO NOT SPREAD WITHOUT PERMISSION OF THE AUTHOR !

  Usage: FAST 

  Where the following are some of the options avaiable:

  -v,  --version                   display the version of GDD and exit
  -h,  --help                      print this help
  -t,  --type                      GNSS type, if you need to download multiple data,
                                   Please separate characters with " , "
                                   Example : GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk
  -l,  --loc                       which folder is the download in
  -y,  --year                      where year are the data to be download
  -d,  --day                       where day are the data to be download
  -o,  --day1                      where first day are the data to be download
  -e,  --day2                      where last day are the data to be download
  -m,  --month                     where month are the data to be download
  -u,  --uncomprss Y/N             Y - unzip file (default)
                                   N - do not unzip files
  -f,  --file                      site file directory,The site names in the file are separated by spaces.
                                   Example : bjfs irkj urum
  -p   --process                   number of threads (default 12)

  Example: FAST -t MGEX_IGS_atx
           FAST -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk -y 2022 -d 22 -p 30
           FAST -t MGEX_WUH_sp3 -y 2022 -d 22 -u N -l D:\code\CDD\Example
           FAST -t MGEX_IGS_rnx -y 2022 -d 22 -f D:\code\cdd\mgex.txt
           FAST -t IVS_week_snx -y 2022 -m 1

数据支持

  1. BRDC : GPS_brdc / MGEX_brdm

  2. SP3 : GPS_IGS_sp3 / GPS_IGR_sp3 / GPS_IGU_sp3 / GPS_GFZ_sp3 / GPS_GRG_sp3
    MGEX_WUH_sp3 / MGEX_WUHU_sp3 / MGEX_GFZ_sp3 / MGEX_COD_sp3
    MGEX_SHA_sp3 / MGEX_GRG_sp3 / GLO_IGL_sp3

  3. RINEX :GPS_IGS_rnx / MGEX_IGS_rnx / GPS_USA_cors / GPS_HK_cors / GPS_EU_cors
    GPS_AU_cors

  4. CLK : GPS_IGS_clk / GPS_IGR_clk / GPS_IGU_clk / GPS_GFZ_clk / GPS_GRG_clk GPS_IGS_clk_30s MGEX_WUH_clk / MGEX_COD_clk / MGEX_GFZ_clk / MGEX_GRG_clk / WUH_PRIDE_clk

  5. ERP : IGS_erp / WUH_erp / COD_erp / GFZ_erp

  6. BIA : MGEX_WHU_bia / GPS_COD_bia / MGEX_COD_bia / MGEX_GFZ_bia

  7. ION : IGS_ion / WUH_ion / COD_ion

  8. SINEX : IGS_day_snx / IGS_week_snx / IVS_week_snx / ILS_week_snx / IDS_week_snx

  9. CNES_AR : CNES_post / CNES_realtime

  10. ATX : MGEX_IGS_atx

  11. DCB : GPS_COD_dcb / MGEX_CAS_dcb / MGEX_WHU_OSB / P1C1 / P1P2 / P2C2

  12. Time_Series : IGS14_TS_ENU / IGS14_TS_XYZ / Series_TS_Plot

  13. Velocity_Fields : IGS14_Venu / IGS08_Venu / PLATE_Venu

  14. SLR : HY_SLR / GRACE_SLR / BEIDOU_SLR

  15. OBX : GPS_COD_obx / GPS_GRG_obx / MGEX_WUH_obx / MGEX_COD_obx / MGEX_GFZ_obx

  16. TRO : IGS_zpd / COD_tro / JPL_tro / GRID_1x1_VMF3 / GRID_2.5x2_VMF1 / GRID_5x5_VMF3

参与贡献

  1. 常春涛@中国测绘科学研究院
    程序思路、主程序编写、文档编写、程序测试

  2. 蒋科材博士后@武汉大学
    程序思路、并行计算处理思路

  3. 慕任海博士@武汉大学
    程序思路、程序编写、程序测试

  4. 李博博士@辽宁工程技术大学&中国测绘科学研究院
    程序测试、文档编写、节点汇总

  5. 李勇熹@兰州交通大学&中国测绘科学研究院
    程序测试、节点汇总

  6. 曹多明@山东科技大学&中国测绘科学研究院
    程序测试、节点汇总

Owner
ChangChuntao
QQ 1252443496 WECHAT amst-jazz
ChangChuntao
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022