NPBG++: Accelerating Neural Point-Based Graphics

Related tags

Deep Learningnpbgpp
Overview

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics

Project Page | Paper

This repository contains the official Python implementation of the paper.

The repository also contains faithful implementation of NPBG.

We introduce the pipelines working with following datasets: ScanNet, NeRF-Synthetic, H3DS, DTU.

We follow the PyTorch3D convention for coordinate systems and cameras.

Changelog

  • [April 27, 2022] Added more example data and point clouds
  • [April 5, 2022] Initial code release

Dependencies

python -m venv ~/.venv/npbgplusplus
source ~/.venv/npbgplusplus/bin/activate
pip install -r requirements.txt

# install pytorch3d
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install "git+https://github.com/facebookresearch/[email protected]" --no-cache-dir --verbose

# install torch_scatter (2.0.8)
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.1+${CUDA}.html
# where ${CUDA} should be replaced by either cpu, cu101, cu102, or cu111 depending on your PyTorch installation.
# {CUDA} must match with torch.version.cuda (not with runtime or driver version)
# using 1.7.1 instead of 1.7.0 produces "incompatible cuda version" error

python setup.py build develop

Below you can see the examples on how to run the particular stages of different models on different datasets.

How to run NPBG++

Checkpoints and example data are available here.

Run training
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_scannet datasets=scannet_pretrain datasets.n_point=6e6 system=npbgpp_sphere system.visibility_scale=0.5 trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_nerf datasets=nerf_blender_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_h3ds datasets=h3ds_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_dtu datasets=dtu_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1  weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
Run testing
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_eval_scan118 datasets=dtu_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/DTU_masked datasets.scene_name=scan118 system=npbgpp_sphere system.visibility_scale=1.0 weights_path=./checkpoints/npbgpp_dtu_nm_mvs_ft_epoch35.ckpt eval_only=true dataloader=small
Run finetuning of coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_ft datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.train_num_samples=2000 datasets.train_image_size=null datasets.train_random_shift=false datasets.train_random_zoom=[0.5,2.0] datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors trainer.max_epochs=20 system.descriptors_pretrained_dir=experiments/npbgpp_eval_5ae021f2805c0854/descriptors weights_path=$\{hydra:runtime.cwd\}/checkpoints/npbgpp_h3ds.ckpt dataloader=small
Run testing with finetuned coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_test datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors system.descriptors_pretrained_dir=experiments/npbgpp_5ae021f2805c0854_ft/descriptors weights_path=experiments/npbgpp_5ae021f2805c0854_ft/checkpoints/last.ckpt dataloader=small eval_only=true

How to run NPBG

Run pretraining
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet datasets=scannet_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet/result/descriptors trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=11e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf datasets=nerf_blender_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_nerf/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds datasets=h3ds_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6  # Submitted batch job 1175175
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm datasets=dtu_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm/result/descriptors trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6
Run fine-tuning on 1 scene
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet_0045 datasets=scannet_one_scene datasets.scene_name=scene0045_00 datasets.n_point=6e6 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet_0045/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_scannet/result/checkpoints/epoch38.ckpt system.max_points=6e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf_hotdog datasets=nerf_blender_one_scene datasets.scene_name=hotdog datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=npbgplusplus/experiments/npbg_nerf_hotdog/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_nerf/result/checkpoints/epoch23.ckpt system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds_5ae021f2805c0854 datasets=h3ds_one_scene datasets.scene_name=5ae021f2805c0854 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds_5ae021f2805c0854/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_h3ds/result/checkpoints/epoch23.ckpt system.max_points=3e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm_scan110 datasets=dtu_one_scene datasets.scene_name=scan110 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm_scan110/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_dtu_nm/result/checkpoints/epoch35.ckpt system.max_points=3e6

Citation

If you find our work useful in your research, please consider citing:

@article{rakhimov2022npbg++,
  title={NPBG++: Accelerating Neural Point-Based Graphics},
  author={Rakhimov, Ruslan and Ardelean, Andrei-Timotei and Lempitsky, Victor and Burnaev, Evgeny},
  journal={arXiv preprint arXiv:2203.13318},
  year={2022}
}

License

See the LICENSE for more details.

Owner
Ruslan Rakhimov
Ruslan Rakhimov
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022