Ensemble Visual-Inertial Odometry (EnVIO)

Related tags

Deep Learningenvio
Overview

Ensemble Visual-Inertial Odometry (EnVIO)

Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park

1. Overview

This is a ROS package of Ensemble Visual-Inertial Odometry (EnVIO) written in C++. It features a photometric (direct) measurement model and stochastic linearization that are implemented by iterated extended Kalman filter fully built on the matrix Lie group. EnVIO takes time-synced stereo images and IMU readings as input and outputs the current vehicle pose and feature depths at the current camera frame with their estimated uncertainties.

Video Label

2. Build

  • This package was tested on Ubuntu 16.04 (ROS Kinetic) with Eigen 3.3.7 for matrix computation and OpenCV 3.3.1 for image processing in C++11.
  • There are no additional dependencies, we hope this package can be built without any difficulties in different environments.
  • We use the catkin build system :
cd catkin_ws
catkin_make

3. Run (EuRoC example)

  • Configuration and launch files are prepared in config/euroc/camchain-imucam-euroc.yaml and launch/nesl_envio_euroc.launch.
  • The configuration files are output by Kalibr toolbox.
  • Filter and image processing parameters are set from the launch file.
  • Please note that our filter implementation requires static state at the beginning to initialize tilt angles, velocity and gyroscope biases. The temporal window for this process can be set by num_init_samples in the launch file.
  • As default our package outputs est_out.txt that includes estimated states.
roslaunch ensemble_vio nesl_envio_euroc.launch
roslaunch ensemble_vio nesl_envio_rviz.launch
rosbag play rosbag.bag

4. Run your own device

  • Our implementation assumes that stereo camera is hardware-synced and the spatio-temporal parameters for cameras and IMU are calibrated as it is a critical step in sensor fusion.
  • You can calibrate your visual-inertial sensor using Kalibr toolbox and place the output file in config.
  • The input ROS topics and filter parameters are set in launch.
  • With low cost IMUs as in EuRoC sensor suite, you can use the default parameters of EuRoC example file.

5. Citation

If you feel this work helpful to your academic research, we kindly ask you to cite our paper :

@article{EnVIO_TRO,
  title={Photometric Visual-Inertial Navigation with Uncertainty-Aware Ensembles},
  author={Jung, Jae Hyung and Choe, Yeongkwon and Park, Chan Gook},
  journal={IEEE Transactions on Robotics},
  year={2022},
  publisher={IEEE}
}

6. Acknowledgements

This research was supported in part by Unmanned Vehicle Advanced Research Center funded by the Ministry of Science and ICT, the Republic of Korea and in part by Hyundai NGV Company.

7. License

Our source code is released under GPLv3 license. If there are any issues in our source code please contact to the author ([email protected]).

Owner
Jae Hyung Jung
Jae Hyung Jung
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
PyTorch implementation of 'Gen-LaneNet: a generalized and scalable approach for 3D lane detection'

(pytorch) Gen-LaneNet: a generalized and scalable approach for 3D lane detection Introduction This is a pytorch implementation of Gen-LaneNet, which p

Yuliang Guo 233 Jan 06, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022