Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Overview

Cross-framework Python Package for Evaluation of Latent-based Generative Models

Documentation Status CircleCI codecov CodeFactor License PyPI version DOI arXiv

Latte

Latte (for LATent Tensor Evaluation) is a cross-framework Python package for evaluation of latent-based generative models. Latte supports calculation of disentanglement and controllability metrics in both PyTorch (via TorchMetrics) and TensorFlow.

Installation

For developers working on local clone, cd to the repo and replace latte with .. For example, pip install .[tests]

pip install latte-metrics           # core (numpy only)
pip install latte-metrics[pytorch]  # with torchmetrics wrapper
pip install latte-metrics[keras]    # with tensorflow wrapper
pip install latte-metrics[tests]    # for testing

Running tests locally

pip install .[tests]
pytest tests/ --cov=latte

Example

Functional API

import latte
from latte.functional.disentanglement.mutual_info import mig
import numpy as np

latte.seed(42)

z = np.random.randn(16, 8)
a = np.random.randn(16, 2)

mutual_info_gap = mig(z, a, discrete=False, reg_dim=[4, 3])

Modular API

import latte
from latte.metrics.core.disentanglement import MutualInformationGap
import numpy as np

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.compute()

TorchMetrics API

import latte
from latte.metrics.torch.disentanglement import MutualInformationGap
import torch

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update(z, attributes)

mig_val = mig.compute()

Keras Metric API

import latte
from latte.metrics.keras.disentanglement import MutualInformationGap
from tensorflow import keras as tfk

latte.seed(42)

mig = MutualInformationGap()

# ... 
# initialize data and model
# ...

for data, attributes in range(batches):
  recon, z = model(data)

  mig.update_state(z, attributes)

mig_val = mig.result()

Documentation

https://latte.readthedocs.io/en/latest

Supported metrics

๐Ÿงช Beta support | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue | ๐Ÿ‘€ KIV |

Metric Latte Functional Latte Modular TorchMetrics Keras Metric
Disentanglement Metrics
๐Ÿ“ Mutual Information Gap (MIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ??
๐Ÿ“ Dependency-blind Mutual Information Gap (DMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Mutual Information Gap (XMIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Dependency-aware Latent Information Gap (DLIG) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Separate Attribute Predictability (SAP) ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Modularity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ ฮฒ-VAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ FactorVAE Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ DCI Score ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Interventional Robustness Score (IRS) ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Consistency ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
๐Ÿ“ Restrictiveness ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€
Interpolatability Metrics
๐Ÿ“ Smoothness ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Monotonicity ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช
๐Ÿ“ Latent Density Ratio ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ ๐Ÿ•ฃ
๐Ÿ“ Linearity ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€ ๐Ÿ‘€

Bundled metric modules

๐Ÿงช Experimental (subject to changes) | โœ”๏ธ Stable | ๐Ÿ”จ In Progress | ๐Ÿ•ฃ In Queue

Metric Bundle Latte Functional Latte Modular TorchMetrics Keras Metric Included
Dependency-aware Disentanglement ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช MIG, DMIG, XMIG, DLIG
LIAD-based Interpolatability ๐Ÿงช ๐Ÿงช ๐Ÿงช ๐Ÿงช Smoothness, Monotonicity

Cite

For individual metrics, please cite the paper according to the link in the ๐Ÿ“ icon in front of each metric.

If you find our package useful please cite our repository and arXiv preprint as

@article{
  watcharasupat2021latte,
  author = {Watcharasupat, Karn N. and Lee, Junyoung and Lerch, Alexander},
  title = {{Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models}},
  eprint={2112.10638},
  archivePrefix={arXiv},
  primaryClass={cs.LG},
  url = {https://github.com/karnwatcharasupat/latte}
  doi = {10.5281/zenodo.5786402}
}
Comments
  • Documentation: Metric Descriptions

    Documentation: Metric Descriptions

    Might be nice to provide a short description for each metric in addition to the paper links. The readme might get too long with it, but either some doc in the repo or maybe on a github.io page?

    type: documentation priority: high 
    opened by alexanderlerch 2
  • Add Smoothness and Monotonicity support

    Add Smoothness and Monotonicity support

    Smoothness

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    Monotonicity

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add Modularity support

    Add Modularity support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add SAP support

    Add SAP support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add DMIG, DLIG, XMIG support

    Add DMIG, DLIG, XMIG support

    DMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    XMIG

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests

    DLIG

    • [ x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Add MIG support

    Add MIG support

    • [x] Functional API
      • [x] implementation
      • [x] tests
    • [x] Base API
      • [x] implementation
      • [x] tests
    • [x] Torch API
      • [x] implementation
      • [x] tests
    • [x] Keras API
      • [x] implementation
      • [x] tests
    type: enhancement 
    opened by karnwatcharasupat 0
  • Support issue for on-the-fly computation in TF2 graph mode

    Support issue for on-the-fly computation in TF2 graph mode

    The current delegate-to-NumPy technique used in TF is only compatible with TF2 eager mode since Tensor.numpy() would not work in graph mode. As a result, graph-mode users will only be able to use Latte in the evaluation stage when the model weights are no longer changing but not on-the-fly during the training stage.

    However, certain computation steps required for some metrics (especially MI-based ones) necessarily require scikit-learn ops and there is no (maintainable) way to create consistent TF mirrors of those functions.

    One potential solution is to wrap the core functions in tf.numpy_function or tf.py_function but we will have to figure out a way to make the wrapper less painful to implement/maintain since the variable args/kwargs option currently used by the dtype converter is not allowed in these functions. A naive workaround would be to make a tf.numpy_function wrapper for every highest-possible level function with fixed args but this would be considered a last-resort solution.

    Links:

    • https://www.tensorflow.org/api_docs/python/tf/numpy_function
    • https://www.tensorflow.org/api_docs/python/tf/py_function
    type: enhancement priority: medium !! needs more brains !! 
    opened by karnwatcharasupat 3
Releases(v0.0.1-alpha5)
  • v0.0.1-alpha5(Jan 20, 2022)

    What's Changed

    • Add contributing guide by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/16
    • [ADD] add example notebooks by @karnwatcharasupat in https://github.com/karnwatcharasupat/latte/pull/18

    Full Changelog: https://github.com/karnwatcharasupat/latte/compare/v0.0.1-alpha3...v0.0.1-alpha5

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1-alpha3(Dec 16, 2021)

  • v0.0.1-alpha2(Dec 9, 2021)

  • v0.0.1-alpha1(Dec 1, 2021)

Owner
Karn Watcharasupat
Lab Cat ๐Ÿฑ๐ŸŒˆ | Audio Signal Processing Research Student. NTU EEE Class of 2022. Georgia Tech Music Tech Visiting Researcher.
Karn Watcharasupat
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 โ€” Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion ๐Ÿƒโ€โ™€๏ธ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022