GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

Related tags

Deep LearningGUPNet
Overview

GUPNet

This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection".

vis2

citation

If you find our work useful in your research, please consider citing:

@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}

Usage

Train

Download the KITTI dataset from KITTI website, including left color images, camera calibration matrices and training labels.

Clone this project and then go to the code directory:

git clone https://github.com/SuperMHP/GUPNet.git
cd code

We train the model on the following environments:

Python 3.6
Pytorch 1.1
Cuda 9.0

You can build the environment easily by installing the requirements:

pip install -r requirements.yml

Train the model:

CUDA_VISIBLE_DEVICES=0,1,2 python tools/train_val.py

Evaluate

After training the model will directly feedback the detection files for evaluation (If so, you can skip this setep). But if you want to test a given checkpoint, you need to modify the "resume" of the "tester" in the code/experiments/config.yaml and then run:

python tools/train_val.py -e

After that, please use the kitti evaluation devkit (deails can be refered to FrustumPointNet) to evaluate:

g++ evaluate_object_3d_offline_apXX.cpp -o evaluate_object_3d_offline_ap
../../tools/kitti_eval/evaluate_object_3d_offline_apXX KITTI_LABEL_DIR ./output

We also provide the trained checkpoint which achieved the best multi-category performance on the validation set. It can be downloaded at here. This checkpoint performance is as follow:

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 22.76% 16.46% 13.72% - - - - - -
released chpt 23.19% 16.23% 13.57% 11.29% 7.05% 6.36% 9.49% 5.01% 4.14%

Test (I will modify this section to be more automatical in future)

Modify the train set to the trainval set (You can modify it in the code/libs/helpers/dataloader_helper.py), and then modify the input of the evaluation function to the test set (code/tools/train_val.py).

Compressed the output file to a zip file (Please note that this zip file do NOT include any root directory):

cd outputs/data
zip -r submission.zip .

submit this file to the KITTI page (You need to register an account.)

We also give our trained checkpoint on the trainval dataset. You can download it from here. This checkpoint performance is as follow (KITTI page):

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 20.11% 14.20% 11.77% 14.72% 9.53% 7.87% 4.18% 2.65% 2.09%
released chpt 22.26% 15.02% 13.12% 14.95% 9.76% 8.41% 5.58% 3.21% 2.66%

Other relative things

  1. The releases code is originally set to train on multi-category here. If you would like to train on the single category (Car), please modify the code/experiments/config.yaml. Single-category training can lead to higher performance on the Car.

  2. This implementation includes some tricks that do not describe in the paper. Please feel free to ask me in the issue. And I will also update the principle of them in the supplementary materials

  3. The overall code cannot completely remove randomness because we use some functions which do not have reproduced implementation (e.g. ROI align). So the performance may have a certain degree of jitter, which is normal for this project.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
Yan Lu
Yan Lu
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022