GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

Related tags

Deep LearningGUPNet
Overview

GUPNet

This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection".

vis2

citation

If you find our work useful in your research, please consider citing:

@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}

Usage

Train

Download the KITTI dataset from KITTI website, including left color images, camera calibration matrices and training labels.

Clone this project and then go to the code directory:

git clone https://github.com/SuperMHP/GUPNet.git
cd code

We train the model on the following environments:

Python 3.6
Pytorch 1.1
Cuda 9.0

You can build the environment easily by installing the requirements:

pip install -r requirements.yml

Train the model:

CUDA_VISIBLE_DEVICES=0,1,2 python tools/train_val.py

Evaluate

After training the model will directly feedback the detection files for evaluation (If so, you can skip this setep). But if you want to test a given checkpoint, you need to modify the "resume" of the "tester" in the code/experiments/config.yaml and then run:

python tools/train_val.py -e

After that, please use the kitti evaluation devkit (deails can be refered to FrustumPointNet) to evaluate:

g++ evaluate_object_3d_offline_apXX.cpp -o evaluate_object_3d_offline_ap
../../tools/kitti_eval/evaluate_object_3d_offline_apXX KITTI_LABEL_DIR ./output

We also provide the trained checkpoint which achieved the best multi-category performance on the validation set. It can be downloaded at here. This checkpoint performance is as follow:

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 22.76% 16.46% 13.72% - - - - - -
released chpt 23.19% 16.23% 13.57% 11.29% 7.05% 6.36% 9.49% 5.01% 4.14%

Test (I will modify this section to be more automatical in future)

Modify the train set to the trainval set (You can modify it in the code/libs/helpers/dataloader_helper.py), and then modify the input of the evaluation function to the test set (code/tools/train_val.py).

Compressed the output file to a zip file (Please note that this zip file do NOT include any root directory):

cd outputs/data
zip -r submission.zip .

submit this file to the KITTI page (You need to register an account.)

We also give our trained checkpoint on the trainval dataset. You can download it from here. This checkpoint performance is as follow (KITTI page):

Models [email protected]=0.7 [email protected]=0.5 [email protected]=0.5
Easy Mod Hard Easy Mod Hard Easy Mod Hard
original paper 20.11% 14.20% 11.77% 14.72% 9.53% 7.87% 4.18% 2.65% 2.09%
released chpt 22.26% 15.02% 13.12% 14.95% 9.76% 8.41% 5.58% 3.21% 2.66%

Other relative things

  1. The releases code is originally set to train on multi-category here. If you would like to train on the single category (Car), please modify the code/experiments/config.yaml. Single-category training can lead to higher performance on the Car.

  2. This implementation includes some tricks that do not describe in the paper. Please feel free to ask me in the issue. And I will also update the principle of them in the supplementary materials

  3. The overall code cannot completely remove randomness because we use some functions which do not have reproduced implementation (e.g. ROI align). So the performance may have a certain degree of jitter, which is normal for this project.

Contact

If you have any question about this project, please feel free to contact [email protected].

Owner
Yan Lu
Yan Lu
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022