Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Related tags

Deep LearningRNW
Overview

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Kun Wang, Zhenyu Zhang, Zhiqiang Yan, Xiang Li, Baobei Xu, Jun Li and Jian Yang

PCA Lab, Nanjing University of Science and Technology; Tencent YouTu Lab; Hikvision Research Institute

Introduction

This is the official repository for Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark. You can find our paper at arxiv. In this repository, we release the training and testing code, as well as the data split files of RobotCar-Night and nuScenes-Night.

image-20211002220051137

Dependency

  • python>=3.6
  • torch>=1.7.1
  • torchvision>=0.8.2
  • mmcv>=1.3
  • pytorch-lightning>=1.4.5
  • opencv-python>=3.4
  • tqdm>=4.53

Dataset

The dataset used in our work is based on RobotCar and nuScenes. Please visit their official website to download the data (We only used a part of these datasets. If you just want to run the code, (2014-12-16-18-44-24, 2014-12-09-13-21-02) of RobotCar and (Package 01, 02, 05, 09, 10) of nuScenes is enough). To produce the ground truth depth, you can use the above official toolboxes. After preparing datasets, we strongly recommend you to organize the directory structure as follows. The split files are provided in split_files/.

RobotCar-Night root directory
|__Package name (e.g. 2014-12-16-18-44-24)
   |__depth (to store the .npy ground truth depth maps)
      |__ground truth depth files
   |__rgb (to store the .png color images)
      |__color image files
   |__intrinsic.npy (to store the camera intrinsics)
   |__test_split.txt (to store the test samples)
   |__train_split.txt (to store the train samples)
nuScenes-Night root directory
|__sequences (to store sequence data)
   |__video clip number (e.g. 00590cbfa24a430a8c274b51e1c71231)
      |__file_list.txt (to store the image file names in this video clip)
      |__intrinsic.npy (to store the camera intrinsic of this video clip)
      |__image files described in file_list.txt
|__splits (to store split files)
   |__split files with name (day/night)_(train/test)_split.txt
|__test
   |__color (to store color images for testing)
   |__gt (to store ground truth depth maps w.r.t color)

Note: You also need to configure the dataset path in datasets/common.py. The original resolution of nuScenes is too high, so we reduce its resolution to half when training.

Training

Our model is trained using Distributed Data Parallel supported by Pytorch-Lightning. You can train a RNW model on one dataset through the following two steps:

  1. Train a self-supervised model on daytime data, by

    python train.py mono2_(rc/ns)_day number_of_your_gpus
  2. Train RNW by

    python train.py rnw_(rc/ns) number_of_your_gpus

Since there is no eval split, checkpoints will be saved every two epochs.

Testing

You can run the following commands to test on RobotCar-Night

python test_robotcar_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_robotcar.py day/night

To test on nuScenes-Night, you can run

python test_nuscenes_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_nuscenes.py day/night

Besides, you can use the scripts batch_eval_robotcar.py and batch_eval_nuscenes.py to automatically execute the above commands.

Citation

If you find our work useful, please consider citing our paper

@InProceedings{Wang_2021_ICCV,
    author    = {Wang, Kun and Zhang, Zhenyu and Yan, Zhiqiang and Li, Xiang and Xu, Baobei and Li, Jun and Yang, Jian},
    title     = {Regularizing Nighttime Weirdness: Efficient Self-Supervised Monocular Depth Estimation in the Dark},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16055-16064}
}
Owner
kunwang
kunwang
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021