Python parser for DTED data.

Related tags

Deep Learningdted
Overview

DTED Parser

This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This package is tested to work on Shuttle Radar Topography Mission (SRTM) DTED files (as far as I can tell these are the only publicly available DTED files). This can be used as a library to parse these files into numpy arrays and additionally exposes a CLI that can be used to investigate individual DTED files.

For more information and resources about the DTED file format see the end of the README.

How to install

You can install this as a normal python package using pip

pip install dted

How to use

The following example code will parse DTED file checked into this repository for testing.

As a library

Parsing a DTED file into a numpy array is as simple as:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
assert isinstance(tile.data, np.ndarray)

Additionally you can access the metadata of the DTED file (the User Header Label, Data Set Identification, and Accuracy Description records) easily.

from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
print(tile.dsi.south_west_corner)

Parsing entire DTED files has been heavily optimized, but does still take a little bit of time. On my machine (2014 MacbookPro) parsing the 25MB example file take about 120 ms. However, if you only need to look up specific terrain elevations within a DTED file you do not need to parse the entire file. Doing the following takes <1ms on my machine:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
print(tile.get_elevation(LatLon(latitude=41.5, longitude=-70.5)))

If for some reason you really need to eek out every bit of performance and you thoroughly trust your DTED data, you speed up the data parsing by skipping the checksum verification. Doing the following takes about 75 ms on my machine:

import numpy as np
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)
tile.load_data(perform_checksum=False)

assert isinstance(tile.data, np.ndarray)

The final functionality the dted.Tile class offers is to easily check if a coordinate location is contained within the DTED file. This also does not require that the DTED data is fully loaded into memory:

from pathlib import Path
from dted import LatLon, Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file, in_memory=False)

assert LatLon(latitude=41.5, longitude=-70.25) in tile

As a CLI

Installing this package into an activated virtual environment also exposes the dted terminal command. This provides three pieces of functionality:

  1. See report of the metadata of the DTED file.
  2. Lookup terrain elevation at a specific point within the DTED file.
  3. Display and ASCII representation of the DTED file in your terminal.

To get a report of the file metadata:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 
File Path:          test/data/n41_w071_1arc_v3.dt2 (24 MB)
Product Level:      DTED2
Security Code:      U
Compilation Date:   02/2000
Maintenance Date:   
Datums (V/H):       E96/WGS84

    (42.0N,71.0W)      (42.0N,70.0W)
          NW --------------- NE     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          |                   |     
          SW --------------- SE     
    (41.0N,71.0W)      (41.0N,70.0W)

Origin:                 (41.0N,71.0W)
Resolution (lat/lon):   1.0"/1.0"
Accuracy (V/H):         6m/13m

To lookup terrain elevation at a specific point:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --location 41.7 -70.4
51.0 meters

To display the DTED file in your terminal:

(.venv) [email protected]$ dted test/data/n41_w071_1arc_v3.dt2 --display

This will attempt to create an ASCII representation of the DTED file within your terminal at the best resolution possible. Increasing the size of your terminal window or zooming out your terminal window will increase the resolution of the chart:

Normal Resolution Image

High Resolution Image

Why did I add this feature? Why not?

If you want to plot this data like a sane person, you can use the following example code with the matplotlib package (not included)

import matplotlib.pyplot as plt
from pathlib import Path
from dted import Tile

dted_file = Path("test/data/n41_w071_1arc_v3.dt2")
tile = Tile(dted_file)
plt.imshow(tile.data.T[::-1], cmap="hot")

The DTED file format

This parser was created using the specification provided here:

https://www.dlr.de/eoc/Portaldata/60/Resources/dokumente/7_sat_miss/SRTM-XSAR-DEM-DTED-1.1.pdf

Some things to be aware of with the DTED file format:

  1. Some DTED files contain "void" values for data points where elevation data is not known (such as over bodies of water). An example of such a file can be found at test/data/n00_e006_3arc_v2.dt1. This package will emit a warning if void data is found, and the definition of the void value can be found in dted.definitions.VOID_DATA_VALUE.
  2. The DTED data is structured along longitudinal lines. Therefore, when accessing the data within the numpy array the rows correspond to longitude and the columns correspond to latitude. This may seem backwards to your intuition, i.e. you would access the elevation at a coordinate point with tile.data[longitude_index, latitude_index].
  3. Elevation within the DTED file is encoded using "signed magnitude" notation. This has no effect on a user of this package interacting with the parsed terrain elevation data, but it does slow down the parsing of this data as I do not know of an optimized method of parsing signed magnitude data in python. If someone knows how to do this this parsing library could become even faster.

Where to find DTED data

Publicly available DTED data is relatively hard to find and access, but it can be done. The DTED files I used for testing and developing this package come from https://earthexplorer.usgs.gov/.

This EarthExplorer app provided by the USGS provides an interface to download many types of terrain data, including the SRTM DTED data. However, you need to make an account with them in order to perform and I'm unsure of a way to use their machine-to-machine API to automate downloading data.

Contributing

Contributions are absolutely encouraged! To develop on this project you need to install the poetry package manager.

Clone the repo:

[email protected]$ git clone https://github.com/bbonenfant/dted

Create and activate the virtual environment:

[email protected]$ poetry install && source .venv/bin/activate

To run the tests:

(.venv) [email protected]$ pytest .

If you are getting BLACK errors from pytest, run the black code formatter:

(.venv) [email protected]$ black .
Comments
  • Areas above 50° or below -50° Latitude

    Areas above 50° or below -50° Latitude

    Hello,

    I am trying to use the Tile(dted_file) on SRTM 1arc DTED files. The publicly available SRTM 1arc data is actually not 1arc by 1arc but 2arc by 1arc, as soon as you are working with areas above 50° Latitude.

    This causes the Tile() method to fail with the error: dted.errors.InvalidFileError: Checksum failed for data block

    When I try to ignore the checksum with load_data(perform_checksum=False), it fails with the error: dted.errors.InvalidFileError: All data blocks within a DTED file must begin with 170. Found: 1

    Do I just have to do something differently or is this something you could fix? It works great otherwise!

    Thank you for the help.

    opened by StefanBregenzer 10
  • Error in calculating latitude and longitude indices

    Error in calculating latitude and longitude indices

    I receive drastically different elevation values for the same location when using DTED levels 0, 1, and 2. An area that I know to be approximately 735m MSL reports the following:

    ~/Desktop/dted/w117$ dted n34.dt0 --location 34.353932 -116.295523
    1035.0 meters
    ~/Desktop/dted/w117$ dted n34.dt1 --location 34.353932 -116.295523
    2557.0 meters
    ~/Desktop/dted/w117$ dted n34.dt2 --location 34.353932 -116.295523
    733.0 meters
    

    In looking at the source code, I believe the calculations for the latitude and longitude indices in the DTED data are wrong:

    I believe this:

            lat_interval, lon_interval = self.dsi.latitude_interval, self.dsi.longitude_interval
            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) / lat_interval
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1) / lon_interval
            )
    

    Should be this:

            latitude_index = round(
                (latlon.latitude - origin_latitude) * (latitude_count - 1) 
            )
            longitude_index = round(
                (latlon.longitude - origin_longitude) * (longitude_count - 1)
            )
    
    opened by rickpresley 2
  • Adding in the Tiles class.

    Adding in the Tiles class.

    New Tiles class added.

    • allows user to pass in directory of dted files, and query that list for elevations
    • functionality works regardless of filenames
    • functionality works recursively in directory
    • works even with a mix of dted 1 and dted 2 files
    • added a description of how to use in the README
    opened by westonCoder 0
  • Import Error

    Import Error

    I am getting an error when importing Tile from dted. I am using a fresh Conda environment but cannot seem to get around this error. I can see the Tile class in dted/dted/tile.py but the import does not work. Error shown below:

    ImportError: cannot import name 'Tile' from partially initialized module 'dted' (most likely due to a circular import) (/<PATH TO FILE>/dted.py)
    
    Python Version: Python 3.9.12
    

    Thanks for your help in advance!

    opened by OliverHeilmann 4
  • Query a DTED Directory instead of a specific File

    Query a DTED Directory instead of a specific File

    It'd be very useful to have a directory full of dted files, and be able to query the pool of tiles instead of checking each individual one. It could get fancy with loading tiles as needed, tracking frequency of use to free up older ones, etc.

    enhancement 
    opened by KPB3rd 2
Releases(v1.0.3)
Owner
Ben Bonenfant
Ben Bonenfant
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022