Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Overview

Nested Graph Neural Networks

About

Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance. It consists of a base GNN (usually a weak message-passing GNN) and an outer GNN. In NGNN, we extract a rooted subgraph around each node, and let the base GNN to learn a subgraph representation from the rooted subgraph, which is used as the root node's representation. Then, the outer GNN further learns a graph representation from these root node representations returned from the base GNN (in this paper, we simply let the outer GNN be a global pooling layer without graph convolution). NGNN is proved to be more powerful than 1-WL, being able to discriminate almost all r-regular graphs where 1-WL always fails. In contrast to other high-order GNNs, NGNN only incurs a constant time higher time complexity than its base GNN (given the rooted subgraph size is bounded). NGNN often shows immediate performance gains in real-world datasets when applying it to a weak base GNN.

Requirements

Stable: Python 3.8 + PyTorch 1.8.1 + PyTorch_Geometric 1.7.0 + OGB 1.3.1

Latest: Python 3.8 + PyTorch 1.9.0 + PyTorch_Geometric 1.7.2 + OGB 1.3.1

Install PyTorch

Install PyTorch_Geometric

Install OGB

Install rdkit by

conda install -c conda-forge rdkit

To run 1-GNN, 1-2-GNN, 1-3-GNN, 1-2-3-GNN and their nested versions on QM9, install k-gnn by executing

python setup.py install

under "software/k-gnn-master/".

Other required python libraries include: numpy, scipy, tqdm etc.

Usages

TU dataset

To run Nested GCN on MUTAG (with subgraph height=3 and base GCN #layers=4), type:

python run_tu.py --model NestedGCN --h 3 --layers 4 --node_label spd --use_rd --data MUTAG

To compare it with a base GCN model only, type:

python run_tu.py --model GCN --layers 4 --data MUTAG

To reproduce the added experiments with hyperparameter searching, type:

python run_tu.py --model GCN --search --data MUTAG 

python run_tu.py --model NestedGCN --h 0 --search --node_label spd --use_rd --data MUTAG

Replace with "--data all" and "--model all" to run all models (NestedGCN, NestedGraphSAGE, NestedGIN, NestedGAT) on all datasets.

QM9

We include the commands for reproducing the QM9 experiments in "run_all_targets_qm9.sh". Uncomment the corresponding command in this file, and then run

./run_all_targets_qm9.sh 0 11

to execute this command repeatedly for all 12 targets.

OGB molecular datasets

To reproduce the ogb-molhiv experiment, run

python run_ogb_mol.py --h 4 --num_layer 6 --save_appendix _h4_l6_spd_rd --dataset ogbg-molhiv --node_label spd --use_rd --drop_ratio 0.65 --runs 10 

When finished, to get the ensemble test result, run

python run_ogb_mol.py --h 4 --num_layer 6 --save_appendix _h4_l6_spd_rd --dataset ogbg-molhiv --node_label spd --use_rd --drop_ratio 0.65 --runs 10 --continue_from 100 --ensemble

To reproduce the ogb-molpcba experiment, run

python run_ogb_mol.py --h 3 --num_layer 4 --save_appendix _h3_l4_spd_rd --dataset ogbg-molpcba --subgraph_pooling center --node_label spd --use_rd --drop_ratio 0.35 --epochs 150 --runs 10

When finished, to get the ensemble test result, run

python run_ogb_mol.py --h 3 --num_layer 4 --save_appendix _h3_l4_spd_rd --dataset ogbg-molpcba --subgraph_pooling center --node_label spd --use_rd --drop_ratio 0.35 --epochs 150 --runs 10 --continue_from 150 --ensemble --ensemble_lookback 140

Simulation on r-regular graphs

To reproduce Appendix C Figure 3, run the following commands:

python run_simulation.py --n 10 20 40 80 160 320 640 1280 --save_appendix _node --N 10 --h 10

python run_simulation.py --n 10 20 40 80 160 320 640 1280 --save_appendix _graph --N 100 --h 10 --graph

The results will be saved in "results/simulation_node/" and "results/simulation_graph/".

Miscellaneous

We have tried our best to clean the code. We will keep polishing it after the author response. If you encounter any errors or bugs, please let us know in OpenReview. Hope you enjoy the code!

TODO

  1. Write a doc or plot a graph to explain the NGNN data structure defined in utils.py

  2. Make pretransform to NGNN data structure parallel.

Owner
Muhan Zhang
Assistant Professor at Peking University.
Muhan Zhang
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022