Python library for tracking human heads with FLAME (a 3D morphable head model)

Overview

Video Head Tracker

Teaser image

3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It determines FLAMEs shape and texture parameters as well as spherical harmonics lights and camera intrinsics for a video sequence. Afterwards, expressions and poses (rigid, neck, jaw, eyes) are optimized for each frame of the video. The only inputs are an RGB video together with facial and iris landmarks. The latter is estimated by our code automatically.

This repository complements the code release of the CVPR2022 paper Neural Head Avatars from Monocular RGB Videos. The code is maintained independently from the paper's code to ease reusing it in other projects.

Installation

  • Install Python 3.9 (it should work with other versions as well, but the setup.py and dependencies must be adjusted to do so).
  • Clone the repo and run pip install -e . from inside the cloned directory.
  • Download the flame head model and texture space from the from the official website and add them as generic_model.pkl and FLAME_texture.npz under ./assets/flame.
  • Finally, go to https://github.com/HavenFeng/photometric_optimization and copy the uv parametrization head_template_mesh.obj of FLAME found there to ./assets/flame, as well.

Usage

To run the tracker on a video run

python vht/optimize_tracking.py --config your_config.ini --video path_to_video --data_path path_to_data

The video path and data path can also be given inside the config file. In general, all parameters in the config file may be overwritten by providing them on the command line explicitly. If a video path is given, the video will be extracted and facial + iris landmarks are predicted for each frame. The frames and landmarks are stored at --data_path. Once extracted, you can reuse them by not passing the --video flag anymore. We provide config file for two identities tracked in the main paper. The video data for these subjects can be downloaded from the paper repository. These configs provide good defaults for other videos, as well.

If you would like to use your own videos, the following parameters are most important to set:

[dataset]
data_path = PATH_TO_DATASET --> discussed above

[training]
output_path = OUTPUT_PATH --> where the results will be stored
keyframes = [90, 415, 434, 193] --> list of frames used to optimize shape, texture, lights and camera
                                --> ideally, you provide one front, one left and one right view

The optimized parameters are stored in the output directory as tracked_flame_params.npz.

License

The code is available for non-commercial scientific research purposes under the CC BY-NC 3.0 license. Please note that the files flame.py and lbs.py are heavily inspired by https://github.com/HavenFeng/photometric_optimization and are property of the Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. The download, use, and distribution of this code is subject to this license. The files that can be found in the ./assets directory, are adapted from the FLAME head model for which the license can be found here.

Citation

If you find our work useful, please include the following citation:

@article{grassal2021neural,
  title={Neural Head Avatars from Monocular RGB Videos},
  author={Grassal, Philip-William and Prinzler, Malte and Leistner, Titus and Rother, Carsten
          and Nie{\ss}ner, Matthias and Thies, Justus},
  journal={arXiv preprint arXiv:2112.01554},
  year={2021}
}

Acknowledgements

This project has received funding from the DFG in the joint German-Japan-France grant agreement (RO 4804/3-1) and the ERC Starting Grant Scan2CAD (804724). We also thank the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for generous allocations of computer time.

PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022