Distance-Ratio-Based Formulation for Metric Learning

Overview

Distance-Ratio-Based Formulation for Metric Learning

Environment

Preparing datasets

CUB

  • Change directory to /filelists/CUB
  • run source ./download_CUB.sh

One might need to manually download CUB data from http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz.

mini-ImageNet

  • Change directory to /filelists/miniImagenet
  • run source ./download_miniImagenet.sh (WARNING: This would download the 155G ImageNet dataset.)

To only download 'miniImageNet dataset' and not the whole 155G ImageNet dataset:

(Download 'csv' files from the codes in /filelists/miniImagenet/download_miniImagenet.sh. Then, do the following.)

First, download zip file from https://drive.google.com/file/d/0B3Irx3uQNoBMQ1FlNXJsZUdYWEE/view (It is from https://github.com/oscarknagg/few-shot). After unzipping the zip file at /filelists/miniImagenet, run a script /filelists/miniImagenet/prepare_mini_imagenet.py which is modified from https://github.com/oscarknagg/few-shot/blob/master/scripts/prepare_mini_imagenet.py. Then, run /filelists/miniImagenet/write_miniImagenet_filelist2.py.

Train

Run python ./train.py --dataset [DATASETNAME] --model [BACKBONENAME] --method [METHODNAME] --train_aug [--OPTIONARG]

To also save training analyses results, for example, run python ./train.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5 > record/miniImagenet_Conv4_proto_S_5s5w.txt

train_models.ipynb contains codes for our experiments.

Save features

Save the extracted feature before the classifaction layer to increase test speed.

For instance, run python ./save_features.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5

Test

For example, run python ./test.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5

Analyze training

Run /record/analyze_training_1shot.ipynb and /record/analyze_training_5shot.ipynb to analyze training results (norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio)

Results

The test results will be recorded in ./record/results.txt

Visual comparison of softmax-based and distance-ratio-based (DR) formulation

The following images visualize confidence scores of red class when the three points are the representing points of red, green, and blue classes.

Softmax-based formulation DR formulation

References and licence

Our repository (a set of codes) is forked from an original repository (https://github.com/wyharveychen/CloserLookFewShot) and codes are under the same licence (LICENSE.txt) as the original repository except for the following.

/filelists/miniImagenet/prepare_mini_imagenet.py file is modifed from https://github.com/oscarknagg/few-shot. It is under a different licence in /filelists/miniImagenet/prepare_mini_imagenet.LICENSE

Copyright and licence notes (including the copyright note in /data/additional_transforms.py) are from the original repositories (https://github.com/wyharveychen/CloserLookFewShot and https://github.com/oscarknagg/few-shot).

Modifications

List of modified or added files (or folders) compared to the original repository (https://github.com/wyharveychen/CloserLookFewShot):

io_utils.py backbone.py configs.py train.py save_features.py test.py utils.py README.md train_models.ipynb /methods/__init__.py /methods/protonet_S.py /methods/meta_template.py /methods/protonet_DR.py /methods/softmax_1nn.py /methods/DR_1nn.py /models/ /filelists/miniImagenet/prepare_mini_imagenet.py /filelists/miniImagenet/prepare_mini_imagenet.LICENSE /filelists/miniImagenet/write_miniImagenet_filelist2.py /record/ /record/preprocessed/ /record/analyze_training_1shot.ipynb /record/analyze_training_5shot.ipynb

My (Hyeongji Kim) main contributions (modifications) are in /methods/meta_template.py, /methods/protonet_DR.py, /methods/softmax_1nn.py, /methods/DR_1nn.py, /record/analyze_training_1shot.ipynb, and /record/analyze_training_5shot.ipynb.

Owner
Hyeongji Kim
Hyeongji Kim
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data πŸ’¨ Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研穢陒 3D η»„ 336 Dec 27, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022