Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

Related tags

Deep LearningACTOR
Overview

ACTOR

Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021.

Please visit our webpage for more details.

teaser

Bibtex

If you find this code useful in your research, please cite:

@INPROCEEDINGS{petrovich21actor,
  title     = {Action-Conditioned 3{D} Human Motion Synthesis with Transformer {VAE}},
  author    = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
  booktitle = {International Conference on Computer Vision (ICCV)},
  year      = {2021}
}

Installation πŸ‘·

1. Create conda environment

conda env create -f environment.yml
conda activate actor

Or install the following packages in your pytorch environnement:

pip install tensorboard
pip install matplotlib
pip install ipdb
pip install sklearn
pip install pandas
pip install tqdm
pip install imageio
pip install pyyaml
pip install smplx
pip install chumpy

The code was tested on Python 3.8 and PyTorch 1.7.1.

2. Download the datasets

For all the datasets, be sure to read and follow their license agreements, and cite them accordingly.

For more information about the datasets we use in this research, please check this page, where we provide information on how we obtain/process the datasets and their citations. Please cite the original references for each of the datasets as indicated.

Please install gdown to download directly from Google Drive and then:

bash prepare/download_datasets.sh

Update: Unfortunately, the NTU13 dataset (derived from NTU) is no longer available.

3. Download some SMPL files

bash prepare/download_smpl_files.sh

This will download the SMPL neutral model from this github repo and additionnal files.

If you want to integrate the male and the female versions, you must:

  • Download the models from the SMPL website
  • Move them to models/smpl
  • Change the SMPL_MODEL_PATH variable in src/config.py accordingly.

4. Download the action recogition models

bash prepare/download_recognition_models.sh

Action recognition models are used to extract motion features for evaluation.

For NTU13 and HumanAct12, we use the action recognition models directly from Action2Motion project.

For the UESTC dataset, we train an action recognition model using STGCN, with this command line:

python -m src.train.train_stgcn --dataset uestc --extraction_method vibe --pose_rep rot6d --num_epochs 100 --snapshot 50 --batch_size 64 --lr 0.0001 --num_frames 60 --view all --sampling conseq --sampling_step 1 --glob --no-translation --folder recognition_training

How to use ACTOR πŸš€

NTU13

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset DATASET --num_epochs 2000 --snapshot 100 --folder exp/ntu13

HumanAct12

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset humanact12 --num_epochs 5000 --snapshot 100 --folder exps/humanact12

UESTC

Training

python -m src.train.train_cvae --modelname cvae_transformer_rc_rcxyz_kl --pose_rep rot6d --lambda_kl 1e-5 --jointstype vertices --batch_size 20 --num_frames 60 --num_layers 8 --lr 0.0001 --glob --translation --no-vertstrans --dataset uestc --num_epochs 1000 --snapshot 100 --folder exps/uestc

Evaluation

python -m src.evaluate.evaluate_cvae PATH/TO/checkpoint_XXXX.pth.tar --batch_size 64 --niter 20

This script will evaluate the trained model, on the epoch XXXX, with 20 different seeds, and put all the results in PATH/TO/evaluation_metrics_XXXX_all.yaml.

If you want to get a table with mean and interval, you can use this script:

python -m src.evaluate.tables.easy_table PATH/TO/evaluation_metrics_XXXX_all.yaml

Pretrained models

You can download pretrained models with this script:

bash prepare/download_pretrained_models.sh

Visualization

Grid of stick figures

 python -m src.visualize.visualize_checkpoint PATH/TO/CHECKPOINT.tar --num_actions_to_sample 5  --num_samples_per_action 5

Each line corresponds to an action. The first column on the right represents a movement of the dataset, and the second column represents the reconstruction of the movement (via encoding/decoding). All other columns on the left are generations with random noise.

Example

ntugrid.gif

Generating and rendering SMPL meshes

Additional dependencies

pip install trimesh
pip install pyrender
pip install imageio-ffmpeg

Generate motions

python -m src.generate.generate_sequences PATH/TO/CHECKPOINT.tar --num_samples_per_action 10 --cpu

It will generate 10 samples per action, and store them in PATH/TO/generation.npy.

Render motions

python -m src.render.rendermotion PATH/TO/generation.npy

It will render the sequences into this folder PATH/TO/generation/.

Examples
Pickup Raising arms High knee running Bending torso Knee raising

Overview of the available models

List of models

modeltype architecture losses
cvae fc rc
gru rcxyz
transformer kl

Construct a model

Follow this: {modeltype}_{architecture} + "_".join(*losses)

For example for the cvae model with Transformer encoder/decoder and with rc, rcxyz and kl loss, you can use: --modelname cvae_transformer_rc_rcxyz_kl.

License

This code is distributed under an MIT LICENSE.

Note that our code depends on other libraries, including SMPL, SMPL-X, PyTorch3D, and uses datasets which each have their own respective licenses that must also be followed.

Owner
Mathis Petrovich
PhD student mainly interested in Human Body Shape Analysis, Computer Vision and Optimal Transport.
Mathis Petrovich
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
[CVPR 2021] MiVOS - Scribble to Mask module

MiVOS (CVPR 2021) - Scribble To Mask Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] A simplistic network that turns scri

Rex Cheng 65 Dec 22, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version δΈ­ζ–‡η‰ˆζœ¬] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023