A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Overview

TAC-GAN

This is the official Tensorflow implementation of TAC-GAN model presented in https://arxiv.org/abs/1703.06412.

Text Conditioned Auxiliary Classifier Generative Adversarial Network, (TAC-GAN) is a text to image Generative Adversarial Network (GAN) for synthesizing images from their text descriptions. TAC-GAN builds upon the AC-GAN by conditioning the generated images on a text description instead of on a class label. In the presented TAC-GAN model, the input vector of the Generative network is built based on a noise vector and another vector containing an embedded representation of the textual description. While the Discriminator is similar to that of the AC-GAN, it is also augmented to receive the text information as input before performing its classification.

For embedding the textual descriptions of the images into vectors we used skip-thought vectors

The following is the architecture of the TAC-GAN model

Prerequisites

Some important dependencies are the following and the rest can be installed using the requirements.txt

  1. Python 3.5
  2. Tensorflow 1.2.0
  3. Theano 0.9.0 : for skip thought vectors
  4. scikit-learn : for skip thought vectors
  5. NLTK 3.2.1 : for skip thought vectors

It is recommended to use a virtual environment for running this project and installing the required dependencies in it by using the requirements.txt file.

The project has been tested on a Ubuntu 14.04 machine with an 12 GB NVIDIA Titen X GPU

1. Setup and Run

1.1. Clone the Repository

git clone https://github.com/dashayushman/TAC-GAN.git
cd TAC-GAN

1.2. Download the Dataset

The model presented in the paper was trained on the flowers dataset. This To train the TAC-GAN on the flowers dataset, first, download the dataset by doing the following,

  1. Download the flower images from here. Extract the 102flowers.tgz file and copy the extracted jpg folder to Data/datasets/flowers

  2. Download the captions from here. Extract the downloaded file, copy the text_c10 folder and paste it in Data/datasets/flowers directory

  3. Download the pretrained skip-thought vectors model from here and copy the downloaded files to Data/skipthoughts

NB: It is recommended to keep all the images in an SSD if available. This makes the batch loading and processing operation faster.

1.3. Data Preprocessing

Extract the skip-thought features for the captions and prepare the dataset for training by running the following script

python dataprep.py --data_dir=Data --dataset=flowers

This script will create a set of pickled files in the datet directory which will be used during training. The following are the available flags for data preparation:

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
data_dir str Data The data directory
dataset str flowers Dataset to use. For Eg., "flowers"

1.4. Training

To train TAC-GAN with the default hyper parameters run the following script

python train.py --dataset="flowers" --model_name=TAC-GAN

While training, you can montor samples generated by the model in the Data/training/TAC_GAN/samples directory. Notice that a directory is created according to the "model_name" taht you provide. This directory contains all the data related to a particular experiment. This can also be considered as an "experiment name" too.

The following flags can be set to change the hyperparameters of the network.

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
epochs int 200 Maximum number of epochs to train
save_every int 30 Save model and samples after this many number.of iterations
resume_model Boolean False To Load the pre-trained model
data_set String flowers Which dataset to use: "flowers"
model_name String model_1 Name of the model: Can be anything
train bool True This is True while training and false otherwise. Used for batch normalization

We used the following script (hyper-parameters) in for the results that we show in our paper

python train.py --t_dim=100 --image_size=128 --data_set=flowers --model_name=TAC_GAN --train=True --resume_model=True --z_dim=100 --n_classes=102 --epochs=400 --save_every=20 --caption_vector_length=4800 --batch_size=128

1.5. Monitoring

While training, you can monitor the updates on the terminal as well as by using tensorboard

1.5.1 The Terminal:

Terminal log

1.5.1 Tensorboard:

You can use the following script to start tensorboard and visualize realtime changes:

tensorboard --logdir=Data/training/TAC_GAN/summaries

Tensorboard

2. Generating Images for the text in the dataset

Once you have trained the model for certain epochs you can generate images for all the text descriptions in the dataset use the following script. This will create a synthetic dataset with images generated by the generator.

python train.py --data_set=flowers --epochs=100 --output_dir=Data/synthetic_dataset --checkpoints_dir=Data/training/TAC_GAN/checkpoints

Notice that the checkpoints directory is ls created automatically created inside the model directory after you run the training script.

This script will create the following directory structure:

Data
  |__synthetic_dataset
        |___ds
             |___train
             |___val

the train directory will contain all the images generated from the text descriptions of the images in the training set and the same goes for the val directory.

3. Generating Images from any Text

To generate images from any text, do the following

3.1 Add Text Descriptions:

Write your text descriptions in a file or use the example file Data/text.txt that we have provided in the Data directory. The text description file should contain one text description per line. For example,

a flower with red petals which are pointed
many pointed petals
A yellow flower

3.2 Extract Skip-Thought Vectors:

Run the following script for extracting the Skip-Thought vectors for the text descriptions

python encode_text.py --caption_file=Data/text.txt --data_dir=Data

This script will create a pickle file called Data/enc_text.pkl with features extracted from the text descriptions.

3.3 Generate Images:

To generate images for the text descriptions, run the following script,

python generate_images.py --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --images_per_caption=30 --data_dir=Data

This will create a directory Data/images_generated_from_text/ with a folder corresponding to every row of the text.txt file. Each of these folders will contain images for that text.

The following are the parameters you need to set, in case you have used different parameters for training the model.

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
images_per_caption int 30 Maximum number of images that you want to generate for each of the text descriptions
data_set String flowers Which dataset to use: "flowers"
checkpoints_dir String /tmp Path to the checkpoints directory which will be used to generate the images

4. Evaluation

We have used two metrics for evaluating TAC-GAN,

  1. Inception-Scope
  2. MS-SSIM score

The links are from where we adapted the code for evaluating TAC-GAN. Before evaluating the model, generate a synthetic dataset by referring to Section 6

4.1 Inception Score

To calculate the inception score, use the following script,

python inception_score.py --output_dir=Data/synthetic_dataset --data_dir=Data --n_images=30000 --image_size=128

This will create a collection of all the generated images in Data/synthetic_dataset/ds_inception and show the inception score on the terminal.

The following are the set of available parameters/flags

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
output_dir str Data/ds_inception Directory to dump all the images for calculating the inception score
data_dir str Data/synthetic_dataset/ds The root directory of the synthetic dataset
n_images int 30000 Number of images to consider for calculating inception score
image_size int 128 Size of the image to consider for calculating inception score

4.2 MS-SSIM

To calculate the MS-SSIM score, use the following script,

python inception_score.py --output_dir=Data --data_dir=Data --dataset=flowers --syn_dataset_dir=Data/synthetic_datset/ds

This will create a Data/msssim.tsv tab separated file. The data in this file is structured as follows


     
       
     

     
    
   

Once you have generated the msssim.tsv file, you can use the following script to generate a figure to compare the MS-SSIM score of the images in the real dataset with the images in the synthetic dataset belonging to the same class,

python utility/plot_msssim.py --input_file=Data/msssim.tsv --output_file=Data/msssim

This will create Data/msssim.pdf, which is the .pdf file of the generated figure.

5. Generate Interpolated Images

In our paper we show the effect of interpolating the noise and the text embedding vectors on the generated image. Images are randomply selected and their text descriptions are used to generate synthetic images. The following sub-sections will elaborate on how to do it and which scripts will help you in doing it.

5.1 Z (Noise) Interpolation

For interpolating the noise vector and generating images, use the following scripts

python z_interpolation.py --output_dir=Data/synthetic_dataset --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --n_images=500

This will generate the interpolated images in Data/synthetic_dataset/z_interpolation/.

5.1 T (Text Embedding) Interpolation

For interpolating the text embedding vectors and generating images, use the following scripts

python t_interpolation.py --output_dir=Data/synthetic_dataset --data_set=flowers --checkpoints_dir=Data/training/TAC_GAN/checkpoints --n_images=500

This will generate the interpolated images in Data/synthetic_dataset/t_interpolation/.

NOTE: Both the above mentioned scripts have the same flags/arguments, which are the following,

FLAG VALUE TYPE DEFAULT VALUE DESCRIPTION
z-dim int 100 Number of dimensions of the Noise vector
t_dim int 256 Number of dimensions for the latent representation of the text embedding.
batch_size int 64 Mini-Batch Size
image_size int 128 Batch size to use during training.
gf_dim int 64 Number of conv filters in the first layer of the generator.
df_dim int 64 Number of conv filters in the first layer of the discriminator.
caption_vector_length int 4800 Length of the caption vector embedding (vector generated using skip-thought vectors model).
n_classes int 102 Number of classes
data_dir String Data Data directory
learning_rate float 0.0002 Learning rate
beta1 float 0.5 Momentum for Adam Update
data_set str flowers The dataset to use: "flowers"
output_dir String Data/synthetic_dataset The directory in which the t_interpolated images will be generated
checkpoints_dir String /tmp Path to the checkpoints directory which will be used to generate the images
n_interp int 100 The factor difference between each interpolation (Should ideally be a multiple of 10)
n_images int 500 Number of images to randomply sample for generating interpolation results

6. References

TAC-GAN

If you find this code usefull, then please use the following BibTex to cite our work.

@article{dash2017tac,
  title={TAC-GAN-Text Conditioned Auxiliary Classifier Generative Adversarial Network},
  author={Dash, Ayushman and Gamboa, John Cristian Borges and Ahmed, Sheraz and Afzal, Muhammad Zeshan and Liwicki, Marcus},
  journal={arXiv preprint arXiv:1703.06412},
  year={2017}
}

Oxford-102 Flowers Dataset

If you use the Oxford-102 Flowers Dataset, then please cite their work using the following BibTex.

@InProceedings{Nilsback08,
   author = "Nilsback, M-E. and Zisserman, A.",
   title = "Automated Flower Classification over a Large Number of Classes",
   booktitle = "Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing",
   year = "2008",
   month = "Dec"
}

Skip-Thought

If you use the Skip-Thought model in your work like us, then please cite their work using the following BibTex

@article{kiros2015skip,
  title={Skip-Thought Vectors},
  author={Kiros, Ryan and Zhu, Yukun and Salakhutdinov, Ruslan and Zemel, Richard S and Torralba, Antonio and Urtasun, Raquel and Fidler, Sanja},
  journal={arXiv preprint arXiv:1506.06726},
  year={2015}
}

Code

We have referred to the text-to-image and DCGAN-tensorflow repositories for developing our code, and we are extremely thankful to them.

Owner
Ayushman Dash
I am a research scientist, musician and composer. I have an affinity towards Machine Learning, Deep Neural Networks and I wish to add more to the community.
Ayushman Dash
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)

代码地址: https://github.com/Sharpiless/yolov5-knowledge-distillation 教师模型: python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022