Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

Overview

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

This repository contains the code for

image1 2D-MobileStereoNet prediction image2 Error map
image3 3D-MobileStereoNet prediction image4 Error map

Installation

Requirements

The code is tested on:

  • Ubuntu 18.04
  • Python 3.6
  • PyTorch 1.4.0
  • Torchvision 0.5.0
  • CUDA 10.0

Setting up the environment

conda env create --file mobilestereonet.yml
conda activate mobilestereonet

Training

Set a variable (e.g. DATAPATH) for the dataset directory DATAPATH="/Datasets/SceneFlow/" or DATAPATH="/Datasets/KITTI2015/". Then, you can run the train.py file as below:

Pretraining on SceneFlow

python train.py --dataset sceneflow --datapath $DATAPATH --trainlist ./filenames/sceneflow_train.txt --testlist ./filenames/sceneflow_test.txt --epochs 20 --lrepochs "10,12,14,16:2" --batch_size 8 --test_batch_size 8 --model MSNet2D

Finetuning on KITTI

python train.py --dataset kitti --datapath $DATAPATH --trainlist ./filenames/kitti15_train.txt --testlist ./filenames/kitti15_val.txt --epochs 400 --lrepochs "200:10" --batch_size 8 --test_batch_size 8 --loadckpt ./checkpoints/pretrained.ckpt --model MSNet2D

The arguments in both cases can be set differently depending on the model and the system.

Prediction

The following script creates disparity maps for a specified model:

python prediction.py --datapath $DATAPATH --testlist ./filenames/kitti15_test.txt --loadckpt ./checkpoints/finetuned.ckpt --dataset kitti --colored True --model MSNet2D

Credits

The implementation of this code is based on PSMNet and GwcNet. Also, thanks to Matteo Poggi for the KITTI python utils.

License

Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022