Pytorch library for seismic data augmentation

Overview

Logo

seismic-augmentation

Pytorch library for seismic data augmentation

Setup

pip install --upgrade git+https://github.com/IMGW-univie/seismic-augmentation.git

Usage example

import torch
from seismic_augmentation.composition import Compose
from seismic_augmentation.augmentations import *

aug = Compose([
         FlipChannels(init_channel_order='ZNE'),
         AddRandomNoise(snr_level_db=-10),
         RandomLowPassFilter(cutoff_freq_range=[1,10]),
         RandomHighPassFilter(cutoff_freq_range=[3,14]),
         Taper(max_percentage=0.5, max_length=10),
         PolarityChange(),
         Normalize()
         ],  
         p=0.5)

transformed = aug(data=waveform, sample_rate=30)

Contribute

Contributors welcome!

Documentation

For now this library is very simple

FlipChannels(init_channel_order='ZNE')
'''
Swaps N and E channels. Easiest way to change azimuth of a signal

init_channel_order - ordering of the channels of your seismic data
'''
AddRandomNoise(snr_level_db=-10)
'''
Adds random noise with desired SNR

snr_level_db - desired signal to noise ratio after augmentation
'''
RandomLowPassFilter(cutoff_freq_range=[1,10])
'''
Applies Low Pass Filter with a random cutoff frequency

cutoff_freq_range - range of possible cutoff frequencies
'''
RandomHighPassFilter(cutoff_freq_range=[1,10])
'''
Applies High Pass Filter with a random cutoff frequency

cutoff_freq_range - range of possible cutoff frequencies
'''
LowPassFilter(cutoff_freq=9.)
'''
Applies Low Pass Filter with a desired cutoff frequency

cutoff_freq - desired cutoff frequency
'''
HighPassFilter(cutoff_freq=9.)
'''
Applies High Pass Filter with a desired cutoff frequency

cutoff_freq - desired cutoff frequency
'''
Taper(max_percentage=0.5, max_length=10)
'''
Applies a taper with specified parameters

max_percentage - how strongly the signal is suppresed
max_length - maximum length of a taper in samples
'''
PolarityChange()
'''
Flips polarity of the signal
'''
Normalize()
'''
Global normalization of 3-channel signal
'''

p - probability that an augmentation would be applied

Inspiration

Highly inspired by Facebook Augly

Owner
Artemii Novoselov
PhD Candidate in University of Vienna. Geophysicist
Artemii Novoselov
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022