BASH - Biomechanical Animated Skinned Human

Overview

BASH - Biomechanical Animated Skinned Human

BASH Teaser

Schleicher, R., Nitschke, M., Martschinke, J., Stamminger, M., Eskofier, B., Klucken, J., Koelewijn, A. (2021). BASH: Biomechanical Animated Skinned Human for Visualization of Kinematics and Muscle Activity. 16th International Conference on Computer Graphics Theory and Applications (GRAPP), 2021.

https://www.scitepress.org/Papers/2021/102106/102106.pdf

BASH Model

Converting a OpenSim [1] format file (.osim + .mot) to the SCAPE [2] framework. Visualization tool to inspect the animated model in 3D.

Processing Pipeline

Input Model: OpenSim

  • Parser
  • Model (.osim)
  • Scale factors (.xml)
  • Motion (.mot)
  • Muscle Activation (.sto)

Baseline model Design for a new Musculoskeltal Model (in Blender)

  • modeling
  • import SCAPE mesh
  • rig and skin skeleton (same hierarchy as musucloskeletal model)
  • place markers (same set as musculoskeletal model)
  • export model (.dae reorders vertices...) => mesh, markers & weights files

Scaling

  • performed automatically, applied correctly to the hierachy, applied in bone space
  • use .xml file or my estimation (defined in settings.h)
  • scaled vs generic in ./data/cache/mesh/

Initial Pose Matching

  • computed automatically using OpenSim's IK solver
  • cached in ./data/cache/mapping for debugging the resulting .mot file

Pose Transformation

  • calculated beforehand (needed the mesh for projection to SCAPE)
  • uses pose mapping projection and kinematic transformations, applied in world space
  • cached in ./data/cache/mesh/

Projection into SCAPE space

  • projection to scape space (only relative rotations)
  • rigid alignment to adjust translation
  • cached in ./data/cache/mesh/

Visualization of Muscle Activation

  • computed at run-time
  • color coding in Fragment Shader

Settings

  • settings.h for keyshortcuts, constants and other configurations

Project structure and dependencies

  • SCAPE: The main Windows-Application that handles the model conversion and visualization

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • Assimp (>= 3.0.0)

  • OpenSim and SimbodyTK (>= 4.0)

  • libRender: A custom framework used for creating a window and render a 3D-application in it

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • libSCAPE: The SCAPE framework to load the SCAPE binary data and create a mesh in pose and shape

  • External dependencies (minimum required version):

  • SuitSparse package: suitsparse + amd + umfpack (>= 5.1.2)

  • GSL (>= 2.4)

SCAPE Framework

  • Implementation in ´SCAPE.h´
  • Model parameters
  • Pose: Rotation vector for each part ('numParts = 16') in three-dimensional twist subvectors (the axis is determined by the vector's direction and the angle is determined by the vector's magnitude.
  • Shape: Scalar PCA coefficients ('numVecs = 20') to modify body proportions like height, size and gender etc.

Building platform x64

  • OpenSim can only be built in 64bit. So we have to use the x64 Platform in order to use their API.
  • Include and link all dependencies in x64.
  • Build the SCAPE framework in x64.
  • Define the flag '#define SAVE_MATRIX 0' once to write new binaries in the correct format (64bit wording).
  • The folder 'data\default_scape_data' should contain the binary files: 'matrixDGrad.bin', 'SCAPE_DGrad_numeric.bin', 'SCAPE_DGrad_symbolic.bin', 'SCAPE_pose.bin'.

Example result

OpenSim's visualization compared to our visualization (data set: straight running [3]): Example

References

[1] Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia,C. L., Dunne, J. J., Ong, C. F., DeMers, M. S., Ra-jagopal, A., Millard, M., et al. (2018). OpenSim: Sim-ulating musculoskeletal dynamics and neuromuscularcontrol to study human and animal movement. PLoSComputational Biology, 14(7):1–20.

[2] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers,J., and Davis, J. (2005). SCAPE: Shape Completionand Animation of People. InACM Transactions onGraphics, volume 24, pages 408–416.

[3] Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B. M., Koelewijn, A. D., and Van den Bogert, A. J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics. Scientific Reports, 10(17655).

Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023