Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Related tags

Deep LearningM3D-VTON
Overview

M3D-VTON: A Monocular-to-3D Virtual Try-On Network

Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Paper | Supplementary | MPV3D Dataset | Pretrained Models

M3D-VTON

Requirements

python >= 3.8.0, pytorch == 1.6.0, torchvision == 0.7.0

Data Processing

After downloading the MPV3D Dataset, please run the following script to preprocess the data:

python util/data_preprocessing.py --MPV3D_root path/to/MPV3D/dataset

Running Inference

We provide demo inputs under the mpv3d_example folder, where the target clothing and the reference person are like:

Demo inputs

with inputs from the mpv3d_example folder, the easiest way to get start is to use the pretrained models and sequentially run the four steps below:

1. Testing MTM Module

python test.py --model MTM --name MTM --dataroot mpv3d_example --datalist test_pairs --results_dir results

2. Testing DRM Module

python test.py --model DRM --name DRM --dataroot mpv3d_example --datalist test_pairs --results_dir results

3. Testing TFM Module

python test.py --model TFM --name TFM --dataroot mpv3d_example --datalist test_pairs --results_dir results

4. Getting colored point cloud and Remeshing

(Note: since the back-side person images are unavailable, in rgbd2pcd.py we provide a fast face inpainting function that produces the mirrored back-side image after a fashion. One may need manually inpaint other back-side texture areas to achieve better visual quality.)

python rgbd2pcd.py

Now you should get the point cloud file prepared for remeshing under results/aligned/pcd/test_pairs/*.ply. MeshLab can be used to remesh the predicted point cloud, with two simple steps below:

  • Normal Estimation: Open MeshLab and load the point cloud file, and then go to Filters --> Normals, Curvatures and Orientation --> Compute normals for point sets

  • Possion Remeshing: Go to Filters --> Remeshing, Simplification and Reconstruction --> Surface Reconstruction: Screen Possion (set reconstruction depth = 9)

Now the final 3D try-on result should be obtained:

Try-on Result

Training on MPV3D Dataset

With the pre-processed MPV3D dataset, you can train the model from scratch by folllowing the three steps below:

1. Train MTM module

python train.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/for/saving/model

then run the command below to obtain the --warproot (here refers to the --results_dir) which is necessary for the other two modules:

python test.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/to/saved/MTMmodel --results_dir path/for/saving/MTM/results

2. Train DRM module

python train.py --model DRM --name DRM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

3. Train TFM module

python train.py --model TFM --name TFM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

(See options/base_options.py and options/train_options.py for more training options.)

License

The use of this code and the MPV3D dataset is RESTRICTED to non-commercial research and educational purposes.

Citation

If our code is helpful to your research, please cite:

@article{Zhao2021M3DVTONAM,
  title={M3D-VTON: A Monocular-to-3D Virtual Try-On Network},
  author={Fuwei Zhao and Zhenyu Xie and Michael C. Kampffmeyer and Haoye Dong and Songfang Han and Tianxiang Zheng and Tao Zhang and Xiaodan Liang},
  journal={ArXiv},
  year={2021},
  volume={abs/2108.05126}
}
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Manim is an engine for precise programmatic animations, designed for creating explanatory math videos

Manim is an engine for precise programmatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This rep

Grant Sanderson 49k Jan 09, 2023
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022