Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Overview

Stylized Neural Painting

Open in RunwayML Badge

Preprint | Project Page | Colab Runtime 1 | Colab Runtime 2

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

We propose an image-to-painting translation method that generates vivid and realistic painting artworks with controllable styles. Different from previous image-to-image translation methods that formulate the translation as pixel-wise prediction, we deal with such an artistic creation process in a vectorized environment and produce a sequence of physically meaningful stroke parameters that can be further used for rendering. Since a typical vector render is not differentiable, we design a novel neural renderer which imitates the behavior of the vector renderer and then frame the stroke prediction as a parameter searching process that maximizes the similarity between the input and the rendering output. Experiments show that the paintings generated by our method have a high degree of fidelity in both global appearance and local textures. Our method can be also jointly optimized with neural style transfer that further transfers visual style from other images.

In this repository, we implement the complete training/inference pipeline of our paper based on Pytorch and provide several demos that can be used for reproducing the results reported in our paper. With the code, you can also try on your own data by following the instructions below.

The implementation of the sinkhorn loss in our code is partially adapted from the project SinkhornAutoDiff.

License

Creative Commons License Stylized Neural Painting by Zhengxia Zou is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

One-min video result

IMAGE ALT TEXT HERE

**Updates on CPU mode (Nov 29, 2020)

PyTorch-CPU mode is now supported! You can try out on your local machine without any GPU cards.

**Updates on lightweight renderers (Nov 26, 2020)

We have provided some lightweight renderers where users now can easily generate high resolution paintings with much more stroke details. With the lightweight renders, the rendering speed also improves a lot (x3 faster). This update also solves the out-of-memory problem when running our demo on a GPU card with limited memory (e.g. 4GB).

Please check out the following for more details.

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/stylized-neural-painting.git 
cd stylized-neural-painting
  1. Download one of the pretrained neural renderers from Google Drive (1. oil-paint brush, 2. watercolor ink, 3. marker pen, 4. color tapes), and unzip them to the repo directory.
unzip checkpoints_G_oilpaintbrush.zip
unzip checkpoints_G_rectangle.zip
unzip checkpoints_G_markerpen.zip
unzip checkpoints_G_watercolor.zip
  1. We have also provided some lightweight renderers where users can generate high-resolution paintings on their local machine with limited GPU memory. Please feel free to download and unzip them to your repo directory. (1. oil-paint brush (lightweight), 2. watercolor ink (lightweight), 3. marker pen (lightweight), 4. color tapes (lightweight)).
unzip checkpoints_G_oilpaintbrush_light.zip
unzip checkpoints_G_rectangle_light.zip
unzip checkpoints_G_markerpen_light.zip
unzip checkpoints_G_watercolor_light.zip

To produce our results

Photo to oil painting

  • Progressive rendering
python demo_prog.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --max_divide 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net
  • Progressive rendering with lightweight renderer (with lower GPU memory consumption and faster speed)
python demo_prog.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --max_divide 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush_light --net_G zou-fusion-net-light
  • Rendering directly from mxm image grids
python demo.py --img_path ./test_images/apple.jpg --canvas_color 'white' --max_m_strokes 500 --m_grid 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net

Photo to marker-pen painting

  • Progressive rendering
python demo_prog.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --max_divide 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen --net_G zou-fusion-net
  • Progressive rendering with lightweight renderer (with lower GPU memory consumption and faster speed)
python demo_prog.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --max_divide 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen_light --net_G zou-fusion-net-light
  • Rendering directly from mxm image grids
python demo.py --img_path ./test_images/diamond.jpg --canvas_color 'black' --max_m_strokes 500 --m_grid 5 --renderer markerpen --renderer_checkpoint_dir checkpoints_G_markerpen --net_G zou-fusion-net

Style transfer

  • First, you need to generate painting and save stroke parameters to output dir
python demo.py --img_path ./test_images/sunflowers.jpg --canvas_color 'white' --max_m_strokes 500 --m_grid 5 --renderer oilpaintbrush --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --net_G zou-fusion-net --output_dir ./output
  • Then, choose a style image and run style transfer on the generated stroke parameters
python demo_nst.py --renderer oilpaintbrush --vector_file ./output/sunflowers_strokes.npz --style_img_path ./style_images/fire.jpg --content_img_path ./test_images/sunflowers.jpg --canvas_color 'white' --net_G zou-fusion-net --renderer_checkpoint_dir checkpoints_G_oilpaintbrush --transfer_mode 1

You may also specify the --transfer_mode (0: transfer color only, 1: transfer both color and texture)

Also, please note that in the current version, the style transfer are not supported by the progressive rendering mode. We will be working on this feature in the near future.

Generate 8-bit graphic artworks

python demo_8bitart.py --img_path ./test_images/monalisa.jpg --canvas_color 'black' --max_m_strokes 300 --max_divide 4

Running through SSH

If you would like to run remotely through ssh and do not have something like X-display installed, you will need --disable_preview to turn off cv2.imshow on the run.

python demo_prog.py --disable_preview

Google Colab

Here we also provide a minimal working example of the inference runtime of our method. Check out the following runtimes and see your result on Colab.

Colab Runtime 1 : Image to painting translation (progressive rendering)

Colab Runtime 2 : Image to painting translation with image style transfer

To retrain your neural renderer

You can also choose a brush type and train the stroke renderer from scratch. The only thing to do is to run the following common. During the training, the ground truth strokes are generated on-the-fly, so you don't need to download any external dataset.

python train_imitator.py --renderer oilpaintbrush --net_G zou-fusion-net --checkpoint_dir ./checkpoints_G --vis_dir val_out --max_num_epochs 400 --lr 2e-4 --batch_size 64

Citation

If you use our code for your research, please cite the following paper:

@inproceedings{zou2020stylized,
    title={Stylized Neural Painting},
      author={Zhengxia Zou and Tianyang Shi and Shuang Qiu and Yi Yuan and Zhenwei Shi},
      year={2020},
      eprint={2011.08114},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022