2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

Related tags

Deep LearningTFill
Overview

TFill

arXiv | Project

This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity Image Completion" by Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai and Dinh Phung. Given masked images, the proposed TFill model is able to generate high-fidelity plausible results on various settings.

Examples

teaser

Framework

We propose the two-stages image completion framework, where the upper content inference network (TFill-Coarse) generates semantically correct content using a transformer encoder to directly capture the global context information; the lower appearance refinement network (TFill-refined) copies global visible and generated features to holes.

teaser

Getting started

  • Clone this repo:
git clone https://github.com/lyndonzheng/TFill
cd TFill

Requirements

The original model is trained and evaluated with Pytorch v1.9.1, which cannot be visited in current PyTorch. Therefore, we create a new environment with Pytorch v1.10.0 to test the model, where the performance is the same.

A suitable conda environment named Tfill can be created and activated with:

conda env create -f environment.yaml
conda activate TFill

Runing pretrained models

Download the pre-trained models using the following links (CelebA-HQ, FFHQ, ImageNet, Plcases2 ) and put them undercheckpoints/ directory. It should have the following structure:

./checkpoints/
├── celeba
│   ├── latest_net_D.pth
│   ├── latest_net_D_Ref.pth
│   ├── latest_net_E.pth
│   ├── latest_net_G.pth
│   ├── latest_net_G_Ref.pth
│   ├── latest_net_T.pth
├── ffhq
│   ├── ...
├── ...
  • Test the model
sh ./scripts/test.sh

For different models, the users just need to modify lines 2-4, including name,img_file,mask_file. For instance, we can replace the celeba to imagenet.

The default results will be stored under the results/ folder, in which:

  • examples/: shows original and masked images;
  • img_out/: shows upsampled Coarse outputs;
  • img_ref_out/: shows the final Refined outputs.

Datasets

  • face dataset:
    • 24,183 training images and 2,824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset.
    • 60,000 training images and 10,000 test images from FFHQ provided by StyleGAN.
  • natural scenery: original training and val images from Places2.
  • object original training images from ImageNet.

Traning

  • Train a model (two stage: Coarse and Refinement)
sh ./scripts/train.sh

The default setting is for the top Coarse training. The users just need to replace the coarse with refine at line 6. Then, the model can continue training for high-resolution image completion. More hyper-parameter can be in options/.

The coarse results using transformer and restrictive CNN is impressive, which provides plausible results for both foreground objects and background scene.

teaser teaser

GUI

The GUI operation is similar to our previous GUI in PIC, where steps are also the same.

Basic usage is:

sh ./scripts/ui.sh 

In gui/ui_model.py, users can modify the img_root(line 30) and the corresponding img_files(line 31) to randomly edit images from the testing dataset.

Editing Examples

  • Results (original, output) for face editing

teaser

  • Results (original, masked input, output) for nature scene editing

teaser

Next

  • Higher-resolution pluralistic image completion

License

This work is licensed under a MIT License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

The code also uses our previous PIC. If you use this code for your research, please cite our papers.

@misc{zheng2021tfill,
      title={Bridging Global Context Interactions for High-Fidelity Image Completion},
      author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei and Phung, Dinh},
      year={2021},
      eprint={2104.00845},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022