CAR-API: Cityscapes Attributes Recognition API

Related tags

Deep LearningCAR-API
Overview

CAR-API: Cityscapes Attributes Recognition API

This is the official api to download and fetch attributes annotations for Cityscapes Dataset.

Content

Installation

You first need to download Cityscapes dataset. You can do so by checking this repo.

I'm showing here a simple working example to download the data but for further issues please refer to the source repo. Or download from the official website

  1. Install Cityscapes scripts and other required packages.
$ pip install -r requirements.txt
  1. Run the following script to download Cityscapes dataset. If you don't have an account, you will need to create an account.
$ csDownload -d [DESTINATION_PATH] PACKAGE_NAME

Note: you can also use -l option to list all possible packages to download. i.e.

$ csDownload -l
  1. After downloading all required packages, set the environment variable CITYSCAPES_DATASET to the location of the dataset. For example, if the dataset is installed in the path /home/user/cityscapes/
$ export CITYSCAPES_DATASET="/home/user/cityscapes/"

Note: you can also export the previous command to your ~/.bashrc file for example.

~/.bashrc ">
$ echo 'export CITYSCAPES_DATASET="/home/user/cityscapes/"' > ~/.bashrc

Note2: we actually need the images only. We do not need the labels as it is stored with the attributes annotations as well.

  1. Run the following to download the json files of CAR compressed as a single zip file extract it and then remove the zip file.
$ python download_CAR.py --url_path "https://DOWNLOAD_LINK_HERE"

To obtain the download link, please email me at kmetwaly511 [at] gmail [dot] com.

At this point, you have 4 json files; namely all.json, train.json, val.json and test.json

PyTorch Example

We provide a pytorch example to read the dataset and retrieve a sample of the dataset in pytorch_dataset_CAR.py. Please, refer to main.It contains a code that goes through the entire dataset.

An output sample of the dataset class is of custom type ModelInputItem. Please refer to the definiton of the class for more details about defined methods and variables.

Citation

If you are planning to use this code or the dataset, please cite the work appropriately as follows.

@misc{car_api,
  title = {{CAR}-{API}: an {API} for {CAR} Dataset},
  key = {{CAR}-{API}},
  howpublished = {\url{http://github.com/kareem-metwaly/car-api}},
  note = {Accessed: 2021-11-16}
}

@misc{metwaly2022car,
  title={{CAR} -- Cityscapes Attributes Recognition A Multi-category Attributes Dataset for Autonomous Vehicles}, 
  author={Kareem Metwaly and Aerin Kim and Elliot Branson and Vishal Monga},
  year={2021},
  eprint={2111.08243},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  howpublished = {\url{https://arxiv.org/abs/2111.08243}},
  urldate = {2021-11-17},
}
Owner
Kareem Metwaly
Kareem Metwaly
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022