Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Overview

Spatio-Temporal Entropy Model

A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

More details can be found in the following paper:

Spatiotemporal Entropy Model is All You Need for Learned Video Compression
Alibaba Group, arxiv 2021.4.13
Zhenhong Sun, Zhiyu Tan, Xiuyu Sun, Fangyi Zhang, Dongyang Li, Yichen Qian, Hao Li

Note that It Is Not An Official Implementation Code.

The differences with the original paper are not limited to the following:

  • The number of model channels are fewer.
  • The Encoder/Decoder in original paper consists of conditional conv1 to support various rate in one single model. And the architecture is the same as [2]2. However, I only use the single rate Encoder/Decoder with the same architecture as [2]2

ToDo:

  • 1. various rate model training and evaluation.

Environment

  • Python == 3.7.10
  • Pytorch == 1.7.1
  • CompressAI

Dataset

I use the Vimeo90k Septuplet Dataset to train the models. The Dataset contains about 64612 training sequences and 7824 testing sequences. All sequence contains 7 frames.

The train dataset folder structure is as

.dataset/vimeo_septuplet/
│  sep_testlist.txt
│  sep_trainlist.txt
│  vimeo_septuplet.txt
│  
├─sequences
│  ├─00001
│  │  ├─0001
│  │  │      f001.png
│  │  │      f002.png
│  │  │      f003.png
│  │  │      f004.png
│  │  │      f005.png
│  │  │      f006.png
│  │  │      f007.png
│  │  ├─0002
│  │  │      f001.png
│  │  │      f002.png
│  │  │      f003.png
│  │  │      f004.png
│  │  │      f005.png
│  │  │      f006.png
│  │  │      f007.png
...

I evaluate the model on UVG & HEVC TEST SEQUENCE Dataset. The test dataset folder structure is as

.dataset/UVG/
├─PNG
│  ├─Beauty
│  │      f001.png
│  │      f002.png
│  │      f003.png
│  │      ...
│  │      f598.png
│  │      f599.png
│  │      f600.png
│  │      
│  ├─HoneyBee
│  │      f001.png
│  │      f002.png
│  │      f003.png
│  │      ...
│  │      f598.png
│  │      f599.png
│  │      f600.png
│  │     
│  │      ...
.dataset/HEVC/
├─BasketballDrill
│      f001.png
│      f002.png
│      f003.png
│      ...
│      f098.png
│      f099.png
│      f100.png
│      
├─BasketballDrive
│      f001.png
│      f002.png
│      ...

Train Your Own Model

python3 trainSTEM.py -d /path/to/your/image/dataset/vimeo_septuplet --lambda 0.01 -lr 1e-4 --batch-size 16 --model-save /path/to/your/model/save/dir --cuda --checkpoint /path/to/your/iframecompressor/checkpoint.pth.tar

I tried to train with Mean-Scale Hyperprior / Joint Autoregressive Hierarchical Priors / Cheng2020Attn in CompressAI library and find that a powerful I Frame Compressor does have great performance benefits.

Evaluate Your Own Model

python3 evalSTEM.py --checkpoint /path/to/your/iframecompressor/checkpoint.pth.tar --entropy-model-path /path/to/your/stem/checkpoint.pth.tar

Currently only support evaluation on UVG & HEVC TEST SEQUENCE Dataset.

Result

测试数据集UVG PSNR BPP PSNR in paper BPP in paper
SpatioTemporalPriorModel_Res 36.104 0.087 35.95 0.080
SpatioTemporalPriorModel 36.053 0.080 35.95 0.082
SpatioTemporalPriorModelWithoutTPM None None 35.95 0.100
SpatioTemporalPriorModelWithoutSPM 36.066 0.080 35.95 0.087
SpatioTemporalPriorModelWithoutSPMTPM 36.021 0.141 35.95 0.123

PSNR in paper & BPP in paper is estimated from Figure 6 in the original paper.

It seems that the context model SPM has no good effect in my experiments.

I look forward to receiving more feedback on the test results, and feel free to share your test results!

More Informations About Various Rate Model Training

As stated in the original paper, they use a variable-rate auto-encoder to support various rate in one single model. I tried to train STEM with GainedVAE, which is also a various rate model. Some point can achieve comparable r-d performance while others may degrade. What's more, the interpolation result could have more performance degradation cases.

Probably we need Loss Modulator3 for various rate model training. Read Oren Ripple's ICCV 2021 paper3 for more details.

Acknowledgement

The framework is based on CompressAI, I add the model in compressai.models.spatiotemporalpriors. And trainSTEM.py/evalSTEM.py is modified with reference to compressai_examples

Reference

[1] [Variable Rate Deep Image Compression With a Conditional Autoencoder](https://openaccess.thecvf.com/content_ICCV_2019/html/Choi_Variable_Rate_Deep_Image_Compression_With_a_Conditional_Autoencoder_ICCV_2019_paper.html)
[2] [Joint Autoregressive and Hierarchical Priors for Learned Image Compression](https://arxiv.org/abs/1809.02736)
[3] [ELF-VC Efficient Learned Flexible-Rate Video Coding](https://arxiv.org/abs/2104.14335)

Contact

Feel free to contact me if there is any question about the code or to discuss any problems with image and video compression. ([email protected])

Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023