Deep Learning Models for Causal Inference

Overview

Deep Learning Models for Causal Inference (under selection on observables)

While there is a lot of interest in using causal inference to improve deep learning, there aren't many examples of how deep learning can be used for statistical estimation in social science. This repository contains extensive tutorials for building deep learning models to do causal estimation under selection on observables.

I tried to write the tutorials at a very high level so that anybody with a basic understanding of causal inference and machine learning could find them useful. The tutorials assume very little prior knowledge about deep learning and TensorFlow. In addition to featuring relevant models, I hoped that these tutorials could be a gentle introduction for building, tuning, and evaluating your own complex models in Tensorflow 2.

These are a work in a progress. If you have any questions or feedback on how I can improve them, please let me know. The tutorials accompany a review we are currently writing on this literature.

Open In Colab 1. Introduction to Deep Learning for Causal Inference on Observables.

This tutorial introduces the idea of representation learning for causal inference. You also build and test a simple conditional average treatment effect (CATE) estimator, TARNet (first introduced in Shalit et al., 2017), using the TF2 functional API.

Open In Colab 2. Causal Inference Metrics and Hyperparameter Optimization.

Because we do not observe counterfactual outcomes, it's not obvious how to optimize supervised learning models for causal inference. This tutorial introduces some metrics for evaluating model performance. In the first part, you learn how to assess performance on these metrics in Tensorboard. In the second part, we hack Keras Tuner to do hyperparameter optimization for TARNet, and discuss considerations for training models as estimators rather than predictors.

Open In Colab 3. Semi-parametric extensions to TARNet

This tutorial highlights some semi-parametric extensions to TARNet featured in Shi et al., 2020. We add treatment modeling to our TARNet model and build an augmented inverse propensity score estimator. We then briefly describe the algorithm for Targeted Maximum Likelihood Estimation to introduce and build a TARNet with Shi et al.'s Targeted Regularization.

Open In Colab 4. Using Integral Probability Metrics for Causal Inference (IN PROGRESS)

This tutorial features the Counterfactual Regression Network (CFRNet) and propensity-weighted CFRNet featured in Shalit et al., 2017, Johannson et al. 2018, Johannson et al. 2020. This approach relies on Integral Probability Metrics (e.g. the MMD and Wasserstein distance used in GANs) to bound the counterfactual prediction loss and force the treated and control distributions closer together. The weighted variant adds adaptive propensity-based weights that provide a consistency guarantee, relax overlap assumptions, and ideally reduce bias.

Owner
Bernard J Koch
Computational sociologist focused on culture and science. Eccentric interests in DL, CI, networks & Bayesian modeling.
Bernard J Koch
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations"

Robust Counterfactual Explanations This repository comes with the paper "On the Robustness of Counterfactual Explanations to Adverse Perturbations". I

Marco 5 Dec 20, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022