Unofficial implementation of Pix2SEQ

Overview

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection

Unofficial implementation of Pix2SEQ. Please use this code with causion. Many implemtation details are not following original paper and significantly simplified.

Aim

This project aims for a step by step replication of Pix2Seq starting from DETR codebase.

Step 1

Starting from DETR, we add bounding box quantization over normalized coordinate, sequence generator from normalized coordinate, auto-regressive decoder and training code for Pix2SEQ.

How to use?

Install packages following original DETR and command line is same as DETR.

By setting image size to 512, each epoch takes 3 minutes on 8 A100 GPU.

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path ../../data/coco/

Released at 8pm, 26th, Seq

Problem to be solved : 1) better logging 2) correct padding, end of sentence, start of sentence token 3) efficient padding 4) better organization of code 5) fixed order of bounding box 6) shared dictionary between position and category

Released at 10pm, 26th, Seq

Problem to be solved: 1) better organization of code 2) fixed order of bounding box

Step 2

Finish inference code of pix2seq and report performance on object detection benchmark. Note that we are going to write an inefficent greedy decoding. The progress can be significantly accelerated by following cache previous state in Fairseq. The quality can be improved by nucleus sampling and beam search. We leave these complex but engineering tricks for future implementation and keep the project as simple as possible for understanding language modeling object detection.

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path ../../data/coco/  --eval --resume checkpoint.pth --batch_size 4

After 30 epoches training, our replication of pix2seq can achieve 12.1 mAP on MSCOCO. Image resolution 512 for fast training.

COCO bbox detection val5k evaluation with maximum 25 boundingx box predictions (Original paper 100 bounding box):

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.121
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.239
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.107
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.091
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.144
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.128
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.350

After 107 epoches training, our replication of pix2seq can achieve 17.9 mAP on MSCOCO. Image resolution 512 for fast training. Checkpoint can be downloaded at here.

COCO bbox detection val5k evaluation with maximum 25 boundingx box predictions (Original paper 100 bounding box):

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.179
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.314
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.177
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.157
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.375
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.469

Observation

(1). The sequence is tend to generate End of Sentence(EOS) early. After generating EOS token, langauge modeling will still genrate boudning box. (2). Repeatable sequence which is a common problem in seq2seq modeling.

Released at 10am, 28th, Seq

Problem to be solved : 1). Add sequence likelihood evaluationn on validation dataset. 2) Better organization of code. 3) FP16 support. 4) Beam Search

Step 3

Add tricks proposed in Pix2SEQ like droplayer, bounding box augmentation, multiple crop augmentation and so on.

Acknowledegement

This codebase heavily borrow from DETR, CART, minGPT and Fairseq and motivated by the method explained in Pix2Seq

Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023