CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

Overview

CCNet: Criss-Cross Attention for Semantic Segmentation

Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV version).

By Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Chang Huang, Humphrey Shi, Wenyu Liu and Thomas S. Huang.

Updates

2021/02: The pure python implementation of CCNet is released in the branch pure-python. Thanks Serge-weihao.

2019/08: The new version CCNet is released on branch Pytorch-1.1 which supports Pytorch 1.0 or later and distributed multiprocessing training and testing This current code is a implementation of the experiments on Cityscapes in the CCNet ICCV version. We implement our method based on open source pytorch segmentation toolbox.

2018/12: Renew the code and release trained models with R=1,2. The trained model with R=2 achieves 79.74% on val set and 79.01% on test set with single scale testing.

2018/11: Code released.

Introduction

motivation of CCNet Long-range dependencies can capture useful contextual information to benefit visual understanding problems. In this work, we propose a Criss-Cross Network (CCNet) for obtaining such important information through a more effective and efficient way. Concretely, for each pixel, our CCNet can harvest the contextual information of its surrounding pixels on the criss-cross path through a novel criss-cross attention module. By taking a further recurrent operation, each pixel can finally capture the long-range dependencies from all pixels. Overall, our CCNet is with the following merits:

  • GPU memory friendly
  • High computational efficiency
  • The state-of-the-art performance

Architecture

Overview of CCNet Overview of the proposed CCNet for semantic segmentation. The proposed recurrent criss-cross attention takes as input feature maps H and output feature maps H'' which obtain rich and dense contextual information from all pixels. Recurrent criss-cross attention module can be unrolled into R=2 loops, in which all Criss-Cross Attention modules share parameters.

Visualization of the attention map

Overview of Attention map To get a deeper understanding of our RCCA, we visualize the learned attention masks as shown in the figure. For each input image, we select one point (green cross) and show its corresponding attention maps when R=1 and R=2 in columns 2 and 3 respectively. In the figure, only contextual information from the criss-cross path of the target point is capture when R=1. By adopting one more criss-cross module, ie, R=2 the RCCA can finally aggregate denser and richer contextual information compared with that of R=1. Besides, we observe that the attention module could capture semantic similarity and long-range dependencies.

License

CCNet is released under the MIT License (refer to the LICENSE file for details).

Citing CCNet

If you find CCNet useful in your research, please consider citing:

@article{huang2020ccnet,
  author={Huang, Zilong and Wang, Xinggang and Wei, Yunchao and Huang, Lichao and Shi, Humphrey and Liu, Wenyu and Huang, Thomas S.},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={CCNet: Criss-Cross Attention for Semantic Segmentation}, 
  year={2020},
  month={},
  volume={},
  number={},
  pages={1-1},
  keywords={Semantic Segmentation;Graph Attention;Criss-Cross Network;Context Modeling},
  doi={10.1109/TPAMI.2020.3007032},
  ISSN={1939-3539}}

@article{huang2018ccnet,
    title={CCNet: Criss-Cross Attention for Semantic Segmentation},
    author={Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle={ICCV},
    year={2019}}

Instructions for Code (2019/08 version):

Requirements

To install PyTorch==0.4.0 or 0.4.1, please refer to https://github.com/pytorch/pytorch#installation.
4 x 12G GPUs (e.g. TITAN XP)
Python 3.6
gcc (GCC) 4.8.5
CUDA 8.0

Compiling

# Install **Pytorch**
$ conda install pytorch torchvision -c pytorch

# Install **Apex**
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install **Inplace-ABN**
$ git clone https://github.com/mapillary/inplace_abn.git
$ cd inplace_abn
$ python setup.py install

Dataset and pretrained model

Plesae download cityscapes dataset and unzip the dataset into YOUR_CS_PATH.

Please download MIT imagenet pretrained resnet101-imagenet.pth, and put it into dataset folder.

Training and Evaluation

Training script.

python train.py --data-dir ${YOUR_CS_PATH} --random-mirror --random-scale --restore-from ./dataset/resnet101-imagenet.pth --gpu 0,1,2,3 --learning-rate 1e-2 --input-size 769,769 --weight-decay 1e-4 --batch-size 8 --num-steps 60000 --recurrence 2

Recommend】You can also open the OHEM flag to reduce the performance gap between val and test set.

python train.py --data-dir ${YOUR_CS_PATH} --random-mirror --random-scale --restore-from ./dataset/resnet101-imagenet.pth --gpu 0,1,2,3 --learning-rate 1e-2 --input-size 769,769 --weight-decay 1e-4 --batch-size 8 --num-steps 60000 --recurrence 2 --ohem 1 --ohem-thres 0.7 --ohem-keep 100000

Evaluation script.

python evaluate.py --data-dir ${YOUR_CS_PATH} --restore-from snapshots/CS_scenes_60000.pth --gpu 0 --recurrence 2

All in one.

./run_local.sh YOUR_CS_PATH

Models

We run CCNet with R=1,2 three times on cityscape dataset separately and report the results in the following table. Please note there exist some problems about the validation/testing set accuracy gap (1~2%). You need to run multiple times to achieve a small gap or turn on OHEM flag. Turning on OHEM flag also can improve the performance on the val set. In general, I recommend you use OHEM in training step.

We train all the models on fine training set and use the single scale for testing. The trained model with R=2 79.74 can also achieve about 79.01 mIOU on cityscape test set with single scale testing (for saving time, we use the whole image as input).

R mIOU on cityscape val set (single scale) Link
1 77.31 & 77.91 & 76.89 77.91
2 79.74 & 79.22 & 78.40 79.74
2+OHEM 78.67 & 80.00 & 79.83 80.00

Acknowledgment

We thank NSFC, ARC DECRA DE190101315, ARC DP200100938, HUST-Horizon Computer Vision ResearchCenter, and IBM-ILLINOIS Center for Cognitive ComputingSystems Research (C3SR).

Thanks to the Third Party Libs

Self-attention related methods:
Object Context Network
Dual Attention Network
Semantic segmentation toolboxs:
pytorch-segmentation-toolbox
semantic-segmentation-pytorch
PyTorch-Encoding

Owner
Zilong Huang
HUSTer
Zilong Huang
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022