Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

Overview

WIBAM (Work in progress)

Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data

3D object detector trained on NuScenes only.

3D object detector trained on NuScenes only

3D object detector finetuned on the WIBAM dataset.

3D object detector finetuned on the WIBAM dataset

Description

This is the project code for WIBAM as presented in our paper:

WIBAM: Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data
Matthew Howe, Ian Reid, Jamie Mackenzie
In: Britich Machine Vision Conference (BMVC) 2021

The preprint paper is available here.

Accurate 7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users. In principle, this could be achieved by a single camera system that is capable of detecting the pose of each vehicle but this would require a large, accurately labelled dataset from which to train the detector. Although large vehicle pose datasets exist (ostensibly developed for autonomous vehicles), we find training on these datasets inadequate. These datasets contain images from a ground level viewpoint, whereas an ideal view for intersection observation would be elevated higher above the road surface. We develop an alternative approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras; showing in the process that large existing autonomous vehicle datasets can be leveraged for pre-training. To fine-tune the monocular 3D object detector, our method utilises multiple 2D detections from overlapping, wide-baseline views and a loss that encodes the subjacent geometric consistency. Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets. We present our training methodology, multi-view reprojection loss, and dataset.

Additional information about my thesis

Link to ARSC video

Replicate my results

Please see the how to run section. Inference can be achieved with a single GPU (~8GB VRAM). Training was done on either two Nvidia 3080s or 2 Nvidia V100s. (min ~40GB VRAM required).

Results

Citation

@article{WIBAM,
  title={Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data},
  author={Matthew Howe, Ian Reid, Jamie Mackenzie},
  journal={32nd British Machine Vision Conference, BMVC 2021},
  year={2021}
}

Acknowledgements

This repo is a modified clone of CenterTrack https://github.com/xingyizhou/CenterTrack. CenterTrack is developed upon CenterNet. Both codebases are released under MIT License themselves. Some code of CenterNet are from third-parties with different licenses, please check the CenterNet repo for details. In addition, this repo uses py-motmetrics for MOT evaluation and nuscenes-devkit for nuScenes evaluation and preprocessing. See NOTICE for detail. Please note the licenses of each dataset. Most of the datasets we used in this project are under non-commercial licenses.

This research has been supported through the Australian Government Research Training Program Scholarship. High performance compute resources used in this work were funded by the Australian Research Council via LE190100080.

Owner
Matthew Howe
Mechatronic Engineering Student
Matthew Howe
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022