RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Overview

RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Website: https://robust.art

Paper: https://openreview.net/forum?id=wu1qmnC32fB

Document: https://robust.art/api

Leaderboard: http://robust.art/results

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial noises, which motivates the benchmark of model robustness. Existing benchmarks mainly focus on evaluating the defenses, but there are no comprehensive studies on how architecture design and general training techniques affect robustness. Comprehensively benchmarking their relationships will be highly beneficial for better understanding and developing robust DNNs. Therefore, we propose RobustART, the first comprehensive Robustness investigation benchmark on ImageNet (including open-source toolkit, pre-trained model zoo, datasets, and analyses) regarding ARchitecture design (44 human-designed off-the-shelf architectures and 1200+ networks from neural architecture search) and Training techniques (10+ general techniques, e.g., data augmentation) towards diverse noises (adversarial, natural, and system noises). Extensive experiments revealed and substantiated several insights for the first time, for example: (1) adversarial training largely improves the clean accuracy and all types of robustness for Transformers and MLP-Mixers; (2) with comparable sizes, CNNs > Transformers > MLP-Mixers on robustness against natural and system noises; Transformers > MLP-Mixers > CNNs on adversarial robustness; for some light-weight architectures (e.g., EfficientNet, MobileNetV2, and Mo- bileNetV3), increasing model sizes or using extra training data reduces robustness. Our benchmark http://robust.art/: (1) presents an open-source platform for conducting comprehensive evaluation on different robustness types; (2) provides a variety of pre-trained models that can be utilized for downstream applications; (3) proposes a new perspective to better understand the mechanism of DNNs towards designing robust architectures, backed up by comprehensive analysis. We will continuously contribute to build this open eco-system for the community.

Installation

You use conda to create a virtual environment to run this project.

git clone --recurse-submodules https://github.com/DIG-Beihang/RobustART.git
cd robustART
conda create --name RobustART python=3.6.9
conda activate RobustART
pip install -r requirements.txt

After this, you should installl pytorch and torchvision package which meet your GPU and CUDA version according to https://pytorch.org

Quick Start

Common Setting

If you want to use this project to train or evaluate model(s), you can choose to create a work directory for saving config, checkpoints, scripts etc.

We have put some example for trainging or evlaluate. You can use it as follows

cd exprs/exp/imagenet-a_o-loop
bash run.sh

Add Noise

You can use the AddNoise's add_noise function to add multiple noise for one image or a batch of images The supported noise list is: ['imagenet-s', 'imagenet-c', 'pgd_linf', 'pgd_l2', 'fgsm', 'autoattack_linf', 'mim_linf', 'pgd_l1']

Example of adding ImageNet-C noise for image

from RobustART.noise import AddNoise
NoiseClass = AddNoise(noise_type='imagenet-c')
# set the config of one kind of noise
NoiseClass.set_config(corruption_name='gaussian_noise')
image_addnoise = NoiseClass.add_noise(image='test_input.jpeg')

Training Pipeline

We provided cls_solver solver to train a model with a specific config

Example of using base config to train a resnet50

cd exprs/robust_baseline_exp/resnet/resnet50
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Evaluation Pipeline

We evaluate model(s) of different dataset, we provides several solver to evaluate the model on one or some specific dataset(s)

Example of evaluation on ImageNet-A and ImageNet-O dataset

cd exprs/exp/imagenet-a_0-loop
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Metrics

We provided metrics APIs, so that you can use these APIs to evaluate results for ImageNet-A,O,P,C,S and Adv noise.

from RobustART.metrics import ImageNetAEvaluator
metric = ImageNetAEvaluator()
metric.eval(res_file)

Citation

@article{tang2021robustart,
title={RobustART: Benchmarking Robustness on Architecture Design and Training Techniques},
author={Shiyu Tang and Ruihao Gong and Yan Wang and Aishan Liu and Jiakai Wang and Xinyun Chen and Fengwei Yu and Xianglong Liu and Dawn Song and Alan Yuille and Philip H.S. Torr and Dacheng Tao},
journal={https://openreview.net/forum?id=wu1qmnC32fB},
year={2021}}
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022