Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Overview

Adaptive Segmentation Mask Attack

This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial example generation method for deep learning segmentation models. This attack was proposed in the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation." published in the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI-2019. (Link to the paper)

General Information

This repository is organized as follows:

  • Code - src/ folder contains necessary python files to perform the attack and calculate various stats (i.e., correctness and modification)

  • Data - data/ folder contains a couple of examples for testing purposes. The data we used in this study can be taken from [1].

  • Model - Example model used in this repository can be downloaded from https://www.dropbox.com/s/6ziz7s070kkaexp/eye_pretrained_model.pt . helper_functions.py contains a function to load this file and main.py contains an exaple that uses this model.

Frequently Asked Questions (FAQ)

  • How can I run the demo?

    1- Download the model from https://www.dropbox.com/s/6ziz7s070kkaexp/eye_pretrained_model.pt

    2- Create a folder called model on the same level as data and src, put the model under this (model) folder.

    3- Run main.py.

  • Would this attack work in multi-class segmentation models?

    Yes, given that you provide a proper target mask, model etc.

  • Does the code require any modifications in order to make it work for multi-class segmentation models?

    No (probably, depending on your model/input). At least the attack itself (adaptive_attack.py) should not require major modifications on its logic.

Citation

If you find the code in this repository useful for your research, consider citing our paper. Also, feel free to use any visuals available here.

@inproceedings{ozbulak2019impact,
    title={Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation},
    author={Ozbulak, Utku and Van Messem, Arnout and De Neve, Wesley},
    booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
    pages={300--308},
    year={2019},
    organization={Springer}
}

Requirements

python > 3.5
torch >= 0.4.0
torchvision >= 0.1.9
numpy >= 1.13.0
PIL >= 1.1.7

References

[1] Pena-Betancor C., Gonzalez-Hernandez M., Fumero-Batista F., Sigut J., Medina-Mesa E., Alayon S., Gonzalez M. Estimation of the relative amount of hemoglobin in the cup and neuroretinal rim using stereoscopic color fundus images.

[2] Ronneberger, O., Fischer, P., Brox, T. U-Net: Convolutional networks for biomedical image segmentation.

Owner
Utku Ozbulak
Fourth-year doctoral student at Ghent University. Located in Ghent University Global Campus, South Korea.
Utku Ozbulak
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

Roche 4 Aug 30, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022