PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Overview

StyleSpeech - PyTorch Implementation

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation.

Status (2021.06.13)

  • StyleSpeech (naive branch)
  • Meta-StyleSpeech (main branch)

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download pretrained models and put them in output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --ref_audio path/to/reference_audio.wav --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/. Your synthesized speech will have ref_audio's style.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LibriTTS/val.txt --restore_step 200000 --mode batch -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

to synthesize all utterances in preprocessed_data/LibriTTS/val.txt. This can be viewed as a reconstruction of validation datasets referring to themselves for the reference style.

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8

Note that the controllability is originated from FastSpeech2 and not a vital interest of StyleSpeech.

Training

Datasets

The supported datasets are

  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LibriTTS/preprocess.yaml

for some preparations.

In this implementation, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt preprocessed_data/LibriTTS

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LibriTTS/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

As described in the paper, the script will start from pre-training the naive model until meta_learning_warmup steps and then meta-train the model for additional steps via episodic training.

TensorBoard

Use

tensorboard --logdir output/log/LibriTTS

to serve TensorBoard on your localhost.

Implementation Issues

  1. Use 22050Hz sampling rate instead of 16kHz.
  2. Add one fully connected layer at the beginning of Mel-Style Encoder to upsample input mel-spectrogram from 80 to 128.
  3. The model size including meta-learner is 28.197M.
  4. Use a maximum 16 batch size on training instead of 48 or 20 mainly due to the lack of memory capacity with a single 24GiB TITAN-RTX. This can be achieved by the following script to filter out data longer than max_seq_len:
    python3 filelist_filtering.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml
    
    This will generate train_filtered.txt in the same location of train.txt.
  5. Since the total batch size is decreased, the number of training steps is doubled compared to the original paper.
  6. Use HiFi-GAN instead of MelGAN for vocoding.

Citation

@misc{lee2021stylespeech,
  author = {Lee, Keon},
  title = {StyleSpeech},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/StyleSpeech}}
}

References

Comments
  • What is the perfermance compared with Adaspeech

    What is the perfermance compared with Adaspeech

    Thank you for your great work and share. Your work looks differ form adaspeech and NAUTILUS. You use GANs which i did not see in other papers regarding adaptative TTS. Have you compare this method with adaspeech1/2? how about the mos and similarity?

    opened by Liujingxiu23 10
  • The size of tensor a (xx) must match the size of tensor b (yy)

    The size of tensor a (xx) must match the size of tensor b (yy)

    Hi I try to run your project. I use cuda 10.1, all requirements are installed (with torch 1.8.1), all models are preloaded. But i have an error: python3 synthesize.py --text "Hello world" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8 --ref_audio ref.wav

    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    Traceback (most recent call last):
      File "synthesize.py", line 268, in <module>
        synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)
      File "synthesize.py", line 152, in synthesize
        d_control=duration_control
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, *kwargs)
      File "/usr/local/work/model/StyleSpeech.py", line 144, in forward
        d_control,
      File "/usr/local/work/model/StyleSpeech.py", line 91, in G
        output, mel_masks = self.mel_decoder(output, style_vector, mel_masks)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 307, in forward
        enc_seq = self.mel_prenet(enc_seq, mask)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 259, in forward
        x = x.masked_fill(mask.unsqueeze(-1), 0)
    RuntimeError: The size of tensor a (44) must match the size of tensor b (47) at non-singleton dimension 1
    
    opened by DiDimus 9
  • VCTK datasets

    VCTK datasets

    Hi, I note your paper evaluates the models' performance on VCTK datasets, but I not see the process file about VCTK. Hence, could you share the files, thank you very much.

    opened by XXXHUA 7
  • training error

    training error

    Thanks for your sharing!

    I tried both naive and main branches using your checkpoints, it seems the former one is much better. So I trained AISHELL3 models with small changes on your code and the synthesized waves are good for me.

    However when I add my own data into AISHELL3, some error occurred: Training: 0%| | 3105/900000 [32:05<154:31:49, 1.61it/s] Epoch 2: 69%|██████████████████████▏ | 318/459 [05:02<02:14, 1.05it/s] File "train.py", line 211, in main(args, configs) File "train.py", line 87, in main output = model(*(batch[2:])) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/StyleSpeech.py", line 83, in forward ) = self.variance_adaptor( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/modules.py", line 404, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (52) must match the size of tensor b (53) at non-singleton dimension 1

    I only replaced two speakers and preprocessed data the same as the in readme.

    Do you have any advice for this error ? Any suggestion is appreciated.

    opened by MingZJU 6
  • the synthesis result is bad when using pretrain model

    the synthesis result is bad when using pretrain model

    hello sir, thanks for your sharing.

    i meet a problem when i using pretrain model to synthsize demo file. the effect of synthesized wav is so bad.

    do you konw what problem happened?

    pretrain_model: output/ckpt/LibriTTS_meta_learner/200000.pth.tar ref_audio: ref_audio.zip demo_txt: {Promises are often like the butterfly, which disappear after beautiful hover. No matter the ending is perfect or not, you cannot disappear from my world.} demo_wav:demo.zip

    opened by mnfutao 4
  • Maybe style_prototype can instead of ref_mel?

    Maybe style_prototype can instead of ref_mel?

    hello @keonlee9420 , thanks for your contribution on StyleSpeech. When I read your paper and source code, I think that the style_prototype (which is an embedding matrix) maybe can instread of the ref_mel, because there is a CE-loss between style_prototype and style_vector, which can control this embedding matrix close to style. In short, we can give a speaker id to synthesize this speaker's wave. Is it right?

    opened by forwiat 3
  • architecture shows bad results

    architecture shows bad results

    Hi, i have completely repeated your steps for learning. During training, style speech loss fell down, but after learning began, meta style speech loss began to grow up. Can you help with training the model? I can describe my steps in more detail.

    opened by e0xextazy 2
  • UnboundLocalError: local variable 'pitch' referenced before assignment

    UnboundLocalError: local variable 'pitch' referenced before assignment

    Hi, when I run preprocessor.py, I have this problem: /preprocessor.py", line 92, in build_from_path if len(pitch) > 0: UnboundLocalError: local variable 'pitch' referenced before assignment When I try to add a global declaration to the function, it shows NameError: name 'pitch' is not defined How should this be resolved? I would be grateful if I could get your guidance soon.

    opened by Summerxu86 0
  • How can I improve the synthesized results?

    How can I improve the synthesized results?

    I have trained the model for 200k steps, and still, the synthesised results are extremely bad. loss_curve This is what my loss curve looks like. Can you help me with what can I do now to improve my synthesized audio results?

    opened by sanjeevani279 1
  • RuntimeError: Error(s) in loading state_dict for Stylespeech

    RuntimeError: Error(s) in loading state_dict for Stylespeech

    Hi @keonlee9420, I am getting the following error, while running the naive branch :

    Traceback (most recent call last):
      File "synthesize.py", line 242, in <module>
        model = get_model(args, configs, device, train=False)
      File "/home/azureuser/aditya_workspace/stylespeech_keonlee_naive/utils/model.py", line 21, in get_model
        model.load_state_dict(ckpt["model"], strict=True)
      File "/home/azureuser/aditya_workspace/keonlee/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for StyleSpeech:
    	Missing key(s) in state_dict: "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_v", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_v", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_v", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_v", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_v", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_v", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_v", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_v", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_v", "D_s.slf_attn_stack.0.layer_norm.weight", "D_s.slf_attn_stack.0.layer_norm.bias", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_v", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_v", "D_s.V.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.bias", "style_prototype.weight".
    	Unexpected key(s) in state_dict: "speaker_emb.weight".
    

    Can you help with this, seems like the pre-trained weights are old and do not conform to the current architecture.

    opened by sirius0503 1
  • time dimension doesn't match

    time dimension doesn't match

    ^MTraining: 0%| | 0/200000 [00:00<?, ?it/s] ^MEpoch 1: 0%| | 0/454 [00:00<?, ?it/s]^[[APrepare training ... Number of StyleSpeech Parameters: 28197333 Removing weight norm... Traceback (most recent call last): File "train.py", line 224, in main(args, configs) File "train.py", line 98, in main output = (None, None, model((batch[2:-5]))) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 144, in forward d_control, File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 88, in G d_control, File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/modules.py", line 417, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (132) must match the size of tensor b (130) at non-singleton dimension 1 ^MTraining: 0%| | 1/200000 [00:02<166:02:12, 2.99s/it]

    I think it might because of mfa I used. As mentioned in https://montreal-forced-aligner.readthedocs.io/en/latest/getting_started.html, I installed mfa through conda.

    Then I used mfa align raw_data/LibriTTS lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS instead of the way you showed. But I can't find a way to run it as the way you showed, because I installed mfa through conda.

    opened by MingjieChen 24
Releases(v1.0.2)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022