Official repository of the paper 'Essentials for Class Incremental Learning'

Overview

Essentials for Class Incremental Learning

Official repository of the paper 'Essentials for Class Incremental Learning'

This Pytorch repository contains the code for our work Essentials for Class Incremental Learning.

This work presents a straightforward class-incrmental learning system that focuses on the essential components and already exceeds the state of the art without integrating sophisticated modules.

Requirements

To install requirements:

pip install -r requirements.txt

Training and Evaluation (CIFAR-100, ImageNet-100, ImageNet-1k)

Following scripts contain both training and evaluation codes. Model is evaluated after each phase in class-IL.

with Knowledge-distillation (KD)

To train the base CCIL model:

bash ./scripts/run_cifar.sh
bash ./scripts/run_imagenet100.sh
bash ./scripts/run_imagenet1k.sh

To train CCIL + Self-distillation

bash ./scripts/run_cifar_w_sd.sh
bash ./scripts/run_imagenet100_w_sd.sh
bash ./scripts/run_imagenet1k_w_sd.sh

Results (CIFAR-100)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 66.44 64.86
CCIL + SD 67.17 65.86

Results (ImageNet-100)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 77.99 75.99
CCIL + SD 79.44 76.77

Results (ImageNet)

Model name Avg Acc (5 iTasks) Avg Acc (10 iTasks)
CCIL 67.53 65.61
CCIL + SD 68.04 66.25

List of Arguments

  • Distillation Methods

    • Knowledge Distillation (--kd, --w-kd X), X is the weightage for KD loss, default=1.0
    • Representation Distillation (--rd, --w-rd X), X is the weightage for cos-RD loss, default=0.05
    • Contrastive Representation Distillation (--nce, --w-nce X), only valid for CIFAR-100, X is the weightage of NCE loss
  • Regularization for the first task

    • Self-distillation (--num-sd X, --epochs-sd Y), X is number of generations, Y is number of self-distillation epochs
    • Mixup (--mixup, --mixup-alpha X), X is mixup alpha value, default=0.1
    • Heavy Augmentation (--aug)
    • Label Smoothing (--label-smoothing, --smoothing-alpha X), X is a alpha value, default=0.1
  • Incremental class setting

    • No. of base classes (--start-classes 50)
    • 5-phases (--new-classes 10)
    • 10-phases (--new-classes 5)
  • Cosine learning rate decay (--cosine)

  • Save and Load

    • Experiment Name (--exp-name X)
    • Save checkpoints (--save)
    • Resume checkpoints (--resume, --resume-path X), only to resume from first snapshot

Citation

@article{ccil_mittal,
    Author = {Sudhanshu Mittal and Silvio Galesso and Thomas Brox},
    Title = {Essentials for Class Incremental Learning},
    journal = {arXiv preprint arXiv:2102.09517},
    Year = {2021},
}
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023