Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Overview

Angora

License Build Status

Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Published Work

Arxiv: Angora: Efficient Fuzzing by Principled Search, S&P 2018.

Building Angora

Build Requirements

  • Linux-amd64 (Tested on Ubuntu 16.04/18.04 and Debian Buster)
  • Rust stable (>= 1.31), can be obtained using rustup
  • LLVM 4.0.0 - 7.1.0 : run PREFIX=/path-to-install ./build/install_llvm.sh.

Environment Variables

Append the following entries in the shell configuration file (~/.bashrc, ~/.zshrc).

export PATH=/path-to-clang/bin:$PATH
export LD_LIBRARY_PATH=/path-to-clang/lib:$LD_LIBRARY_PATH

Fuzzer Compilation

The build script will resolve most dependencies and setup the runtime environment.

./build/build.sh

System Configuration

As with AFL, system core dumps must be disabled.

echo core | sudo tee /proc/sys/kernel/core_pattern

Test

Test if Angora is builded successfully.

cd /path-to-angora/tests
./test.sh mini

Running Angora

Build Target Program

Angora compiles the program into two separate binaries, each with their respective instrumentation. Using autoconf programs as an example, here are the steps required.

# Use the instrumenting compilers
CC=/path/to/angora/bin/angora-clang \
CXX=/path/to/angora/bin/angora-clang++ \
LD=/path/to/angora/bin/angora-clang \
PREFIX=/path/to/target/directory \
./configure --disable-shared

# Build with taint tracking support 
USE_TRACK=1 make -j
make install

# Save the compiled target binary into a new directory
# and rename it with .taint postfix, such as uniq.taint

# Build with light instrumentation support
make clean
USE_FAST=1 make -j
make install

# Save the compiled binary into the directory previously
# created and rename it with .fast postfix, such as uniq.fast

If you fail to build by this approach, try wllvm and gllvm described in Build a target program.

Also, we have implemented taint analysis with libdft64 instead of DFSan (Use libdft64 for taint tracking).

Fuzzing

./angora_fuzzer -i input -o output -t path/to/taint/program -- path/to/fast/program [argv]

For more information, please refer to the documentation under the docs/ directory.

Comments
  • Unable to compile lavam programs correctly

    Unable to compile lavam programs correctly

    Hello Angora authors,

    I'm trying to reproduce the lavam evaluation within Magma's infrastructure. However, I think I encounter the following 2 issues. Could you help me to check if I'm doing anything wrong?

    Thank you in advance!

    The 2 issues are as follow:

    1. Angora cannot find any bugs while AFLplusplus can easily discover ones within a few minutes. From the log files I see that Angora is saying Multiple inconsistent warnings. It caused by the fast and track programs has different behaviors. If most constraints are inconsistent, ensure they are compiled with the same environment. Otherwise, please report us.
    2. For who, AFLplusplus can only find <20 bugs after running for 5 hours. For other targets it is finding the numbers of bugs reported in your paper.

    You can find the scripts I use to compile and run the fuzzing campaigns here. Basically, the lavam programs are compiled with fuzzers/aflplusplus/instrument.sh and fuzzers/angora/instrument.sh, which they set up some config and execute targets/lavam/build.sh.
    In targets/lavam/LAVAM you can find the patched source code following your instructions.

    To launch the fuzzing campaigns, cd into tools/captain and run ./run.sh run_lavamrc.
    run_lavamrc is the config file for the campaign. It would create a working directory in ~/lavam-results, build docker containers and start fuzzing with fuzzers/aflplusplus/run.sh and fuzzers/angora/run.sh. The fuzzing results are stored in ~/lavam-results/ar as tarballs.

    Please do let me know if you need any additional information.

    Spencer

    opened by spencerwuwu 1
  • Fix up compiler warnings

    Fix up compiler warnings

    • Correct signedness for c-strings in angora-clang
    • Const-correctness throughout
    • Move #[link] attribute to extern block

    Fixes all warnings emitted by clang version 14.

    opened by bossmc 0
  • Upgrade to GitHub-native Dependabot

    Upgrade to GitHub-native Dependabot

    Dependabot Preview will be shut down on August 3rd, 2021. In order to keep getting Dependabot updates, please merge this PR and migrate to GitHub-native Dependabot before then.

    Dependabot has been fully integrated into GitHub, so you no longer have to install and manage a separate app. This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When merged, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates, and you'll configure Dependabot through the new config file rather than a UI.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about migrating to GitHub-native Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    dependencies 
    opened by dependabot-preview[bot] 1
  • Angora compile IR

    Angora compile IR

    Would Angora have support to compile from LLVM or BAP derived intermediate representation?

    Trying to analyze binary (pre-compiled) but couldn't figure out how:

     INFO  angora::fuzz_main > CommandOpt { mode: LLVM, id: 0, main: ("/input/azorult2", []), track: ("/input/azorult2", []), tmp_dir: "./output/bar/tmp", out_file: "./output/bar/tmp/cur_input", forksrv_socket_path: "./output/bar/tmp/forksrv_socket", track_path: "./output/bar/tmp/track", is_stdin: true, search_method: Gd, mem_limit: 200, time_limit: 1, is_raw: true, uses_asan: false, ld_library: "$LD_LIBRARY_PATH:/clang+llvm/lib", enable_afl: true, enable_exploitation: true }
    thread 'main' panicked at 'The program is not complied by Angora', fuzzer/src/check_dep.rs:55:9
    
    opened by aug2uag 1
  • Update rand requirement from 0.7 to 0.8

    Update rand requirement from 0.7 to 0.8

    Updates the requirements on rand to permit the latest version.

    Changelog

    Sourced from rand's changelog.

    [0.8.0] - 2020-12-18

    Platform support

    • The minimum supported Rust version is now 1.36 (#1011)
    • getrandom updated to v0.2 (#1041)
    • Remove wasm-bindgen and stdweb feature flags. For details of WASM support, see the getrandom documentation. (#948)
    • ReadRng::next_u32 and next_u64 now use little-Endian conversion instead of native-Endian, affecting results on Big-Endian platforms (#1061)
    • The nightly feature no longer implies the simd_support feature (#1048)
    • Fix simd_support feature to work on current nightlies (#1056)

    Rngs

    • ThreadRng is no longer Copy to enable safe usage within thread-local destructors (#1035)
    • gen_range(a, b) was replaced with gen_range(a..b). gen_range(a..=b) is also supported. Note that a and b can no longer be references or SIMD types. (#744, #1003)
    • Replace AsByteSliceMut with Fill and add support for [bool], [char], [f32], [f64] (#940)
    • Restrict rand::rngs::adapter to std (#1027; see also #928)
    • StdRng: add new std_rng feature flag (enabled by default, but might need to be used if disabling default crate features) (#948)
    • StdRng: Switch from ChaCha20 to ChaCha12 for better performance (#1028)
    • SmallRng: Replace PCG algorithm with xoshiro{128,256}++ (#1038)

    Sequences

    • Add IteratorRandom::choose_stable as an alternative to choose which does not depend on size hints (#1057)
    • Improve accuracy and performance of IteratorRandom::choose (#1059)
    • Implement IntoIterator for IndexVec, replacing the into_iter method (#1007)
    • Add value stability tests for seq module (#933)

    Misc

    • Support PartialEq and Eq for StdRng, SmallRng and StepRng (#979)
    • Added a serde1 feature and added Serialize/Deserialize to UniformInt and WeightedIndex (#974)
    • Drop some unsafe code (#962, #963, #1011)
    • Reduce packaged crate size (#983)
    • Migrate to GitHub Actions from Travis+AppVeyor (#1073)

    Distributions

    • Alphanumeric samples bytes instead of chars (#935)
    • Uniform now supports char, enabling rng.gen_range('A'..='Z') (#1068)
    • Add UniformSampler::sample_single_inclusive (#1003)

    Weighted sampling

    • Implement weighted sampling without replacement (#976, #1013)
    • rand::distributions::alias_method::WeightedIndex was moved to rand_distr::WeightedAliasIndex. The simpler alternative rand::distribution::WeightedIndex remains. (#945)
    • Improve treatment of rounding errors in WeightedIndex::update_weights (#956)
    • WeightedIndex: return error on NaN instead of panic (#1005)

    Documentation

    • Document types supported by random (#994)
    Commits

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language
    • @dependabot badge me will comment on this PR with code to add a "Dependabot enabled" badge to your readme

    Additionally, you can set the following in your Dependabot dashboard:

    • Update frequency (including time of day and day of week)
    • Pull request limits (per update run and/or open at any time)
    • Automerge options (never/patch/minor, and dev/runtime dependencies)
    • Out-of-range updates (receive only lockfile updates, if desired)
    • Security updates (receive only security updates, if desired)
    dependencies 
    opened by dependabot-preview[bot] 0
  • showmap: added tool for displaying coverage data

    showmap: added tool for displaying coverage data

    Analogous to afl-showmap. Logs code coverage information to a file (in the same format as afl-showmap).

    This is my first time writing Rust, so I hope that it's okay!

    opened by adrianherrera 0
Releases(1.3.0)
  • 1.3.0(Apr 13, 2022)

    • Support LLVM 11/12
    • Tested in Rust 1.6.*, and Ubuntu 20.04
    • Fix issues
      • getc model
      • https://github.com/AngoraFuzzer/Angora/commit/b31af93bb7401a296af0ddaa7b80eaaed7f73415
      • https://github.com/AngoraFuzzer/Angora/issues/86
    • New PRs
    Source code(tar.gz)
    Source code(zip)
  • 1.2.2(Jul 17, 2019)

    • Implementation of Never-zero counter: The idea is from Marc and Heiko in AFLPlusPlus . https://github.com/vanhauser-thc/AFLplusplus/blob/master/llvm_mode/README.neverzero

    • add inst_ratio : issue #67

    • fix asan compatible: did not instrument function startswith "asan.module"

    Source code(tar.gz)
    Source code(zip)
  • 1.2.1(Jun 14, 2019)

  • 1.2.0(May 23, 2019)

DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

CCNet: Criss-Cross Attention for Semantic Segmentation Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV versi

Zilong Huang 1.3k Dec 27, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022