Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Overview

Angora

License Build Status

Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Published Work

Arxiv: Angora: Efficient Fuzzing by Principled Search, S&P 2018.

Building Angora

Build Requirements

  • Linux-amd64 (Tested on Ubuntu 16.04/18.04 and Debian Buster)
  • Rust stable (>= 1.31), can be obtained using rustup
  • LLVM 4.0.0 - 7.1.0 : run PREFIX=/path-to-install ./build/install_llvm.sh.

Environment Variables

Append the following entries in the shell configuration file (~/.bashrc, ~/.zshrc).

export PATH=/path-to-clang/bin:$PATH
export LD_LIBRARY_PATH=/path-to-clang/lib:$LD_LIBRARY_PATH

Fuzzer Compilation

The build script will resolve most dependencies and setup the runtime environment.

./build/build.sh

System Configuration

As with AFL, system core dumps must be disabled.

echo core | sudo tee /proc/sys/kernel/core_pattern

Test

Test if Angora is builded successfully.

cd /path-to-angora/tests
./test.sh mini

Running Angora

Build Target Program

Angora compiles the program into two separate binaries, each with their respective instrumentation. Using autoconf programs as an example, here are the steps required.

# Use the instrumenting compilers
CC=/path/to/angora/bin/angora-clang \
CXX=/path/to/angora/bin/angora-clang++ \
LD=/path/to/angora/bin/angora-clang \
PREFIX=/path/to/target/directory \
./configure --disable-shared

# Build with taint tracking support 
USE_TRACK=1 make -j
make install

# Save the compiled target binary into a new directory
# and rename it with .taint postfix, such as uniq.taint

# Build with light instrumentation support
make clean
USE_FAST=1 make -j
make install

# Save the compiled binary into the directory previously
# created and rename it with .fast postfix, such as uniq.fast

If you fail to build by this approach, try wllvm and gllvm described in Build a target program.

Also, we have implemented taint analysis with libdft64 instead of DFSan (Use libdft64 for taint tracking).

Fuzzing

./angora_fuzzer -i input -o output -t path/to/taint/program -- path/to/fast/program [argv]

For more information, please refer to the documentation under the docs/ directory.

Comments
  • Unable to compile lavam programs correctly

    Unable to compile lavam programs correctly

    Hello Angora authors,

    I'm trying to reproduce the lavam evaluation within Magma's infrastructure. However, I think I encounter the following 2 issues. Could you help me to check if I'm doing anything wrong?

    Thank you in advance!

    The 2 issues are as follow:

    1. Angora cannot find any bugs while AFLplusplus can easily discover ones within a few minutes. From the log files I see that Angora is saying Multiple inconsistent warnings. It caused by the fast and track programs has different behaviors. If most constraints are inconsistent, ensure they are compiled with the same environment. Otherwise, please report us.
    2. For who, AFLplusplus can only find <20 bugs after running for 5 hours. For other targets it is finding the numbers of bugs reported in your paper.

    You can find the scripts I use to compile and run the fuzzing campaigns here. Basically, the lavam programs are compiled with fuzzers/aflplusplus/instrument.sh and fuzzers/angora/instrument.sh, which they set up some config and execute targets/lavam/build.sh.
    In targets/lavam/LAVAM you can find the patched source code following your instructions.

    To launch the fuzzing campaigns, cd into tools/captain and run ./run.sh run_lavamrc.
    run_lavamrc is the config file for the campaign. It would create a working directory in ~/lavam-results, build docker containers and start fuzzing with fuzzers/aflplusplus/run.sh and fuzzers/angora/run.sh. The fuzzing results are stored in ~/lavam-results/ar as tarballs.

    Please do let me know if you need any additional information.

    Spencer

    opened by spencerwuwu 1
  • Fix up compiler warnings

    Fix up compiler warnings

    • Correct signedness for c-strings in angora-clang
    • Const-correctness throughout
    • Move #[link] attribute to extern block

    Fixes all warnings emitted by clang version 14.

    opened by bossmc 0
  • Upgrade to GitHub-native Dependabot

    Upgrade to GitHub-native Dependabot

    Dependabot Preview will be shut down on August 3rd, 2021. In order to keep getting Dependabot updates, please merge this PR and migrate to GitHub-native Dependabot before then.

    Dependabot has been fully integrated into GitHub, so you no longer have to install and manage a separate app. This pull request migrates your configuration from Dependabot.com to a config file, using the new syntax. When merged, we'll swap out dependabot-preview (me) for a new dependabot app, and you'll be all set!

    With this change, you'll now use the Dependabot page in GitHub, rather than the Dependabot dashboard, to monitor your version updates, and you'll configure Dependabot through the new config file rather than a UI.

    If you've got any questions or feedback for us, please let us know by creating an issue in the dependabot/dependabot-core repository.

    Learn more about migrating to GitHub-native Dependabot

    Please note that regular @dependabot commands do not work on this pull request.

    dependencies 
    opened by dependabot-preview[bot] 1
  • Angora compile IR

    Angora compile IR

    Would Angora have support to compile from LLVM or BAP derived intermediate representation?

    Trying to analyze binary (pre-compiled) but couldn't figure out how:

     INFO  angora::fuzz_main > CommandOpt { mode: LLVM, id: 0, main: ("/input/azorult2", []), track: ("/input/azorult2", []), tmp_dir: "./output/bar/tmp", out_file: "./output/bar/tmp/cur_input", forksrv_socket_path: "./output/bar/tmp/forksrv_socket", track_path: "./output/bar/tmp/track", is_stdin: true, search_method: Gd, mem_limit: 200, time_limit: 1, is_raw: true, uses_asan: false, ld_library: "$LD_LIBRARY_PATH:/clang+llvm/lib", enable_afl: true, enable_exploitation: true }
    thread 'main' panicked at 'The program is not complied by Angora', fuzzer/src/check_dep.rs:55:9
    
    opened by aug2uag 1
  • Update rand requirement from 0.7 to 0.8

    Update rand requirement from 0.7 to 0.8

    Updates the requirements on rand to permit the latest version.

    Changelog

    Sourced from rand's changelog.

    [0.8.0] - 2020-12-18

    Platform support

    • The minimum supported Rust version is now 1.36 (#1011)
    • getrandom updated to v0.2 (#1041)
    • Remove wasm-bindgen and stdweb feature flags. For details of WASM support, see the getrandom documentation. (#948)
    • ReadRng::next_u32 and next_u64 now use little-Endian conversion instead of native-Endian, affecting results on Big-Endian platforms (#1061)
    • The nightly feature no longer implies the simd_support feature (#1048)
    • Fix simd_support feature to work on current nightlies (#1056)

    Rngs

    • ThreadRng is no longer Copy to enable safe usage within thread-local destructors (#1035)
    • gen_range(a, b) was replaced with gen_range(a..b). gen_range(a..=b) is also supported. Note that a and b can no longer be references or SIMD types. (#744, #1003)
    • Replace AsByteSliceMut with Fill and add support for [bool], [char], [f32], [f64] (#940)
    • Restrict rand::rngs::adapter to std (#1027; see also #928)
    • StdRng: add new std_rng feature flag (enabled by default, but might need to be used if disabling default crate features) (#948)
    • StdRng: Switch from ChaCha20 to ChaCha12 for better performance (#1028)
    • SmallRng: Replace PCG algorithm with xoshiro{128,256}++ (#1038)

    Sequences

    • Add IteratorRandom::choose_stable as an alternative to choose which does not depend on size hints (#1057)
    • Improve accuracy and performance of IteratorRandom::choose (#1059)
    • Implement IntoIterator for IndexVec, replacing the into_iter method (#1007)
    • Add value stability tests for seq module (#933)

    Misc

    • Support PartialEq and Eq for StdRng, SmallRng and StepRng (#979)
    • Added a serde1 feature and added Serialize/Deserialize to UniformInt and WeightedIndex (#974)
    • Drop some unsafe code (#962, #963, #1011)
    • Reduce packaged crate size (#983)
    • Migrate to GitHub Actions from Travis+AppVeyor (#1073)

    Distributions

    • Alphanumeric samples bytes instead of chars (#935)
    • Uniform now supports char, enabling rng.gen_range('A'..='Z') (#1068)
    • Add UniformSampler::sample_single_inclusive (#1003)

    Weighted sampling

    • Implement weighted sampling without replacement (#976, #1013)
    • rand::distributions::alias_method::WeightedIndex was moved to rand_distr::WeightedAliasIndex. The simpler alternative rand::distribution::WeightedIndex remains. (#945)
    • Improve treatment of rounding errors in WeightedIndex::update_weights (#956)
    • WeightedIndex: return error on NaN instead of panic (#1005)

    Documentation

    • Document types supported by random (#994)
    Commits

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language
    • @dependabot badge me will comment on this PR with code to add a "Dependabot enabled" badge to your readme

    Additionally, you can set the following in your Dependabot dashboard:

    • Update frequency (including time of day and day of week)
    • Pull request limits (per update run and/or open at any time)
    • Automerge options (never/patch/minor, and dev/runtime dependencies)
    • Out-of-range updates (receive only lockfile updates, if desired)
    • Security updates (receive only security updates, if desired)
    dependencies 
    opened by dependabot-preview[bot] 0
  • showmap: added tool for displaying coverage data

    showmap: added tool for displaying coverage data

    Analogous to afl-showmap. Logs code coverage information to a file (in the same format as afl-showmap).

    This is my first time writing Rust, so I hope that it's okay!

    opened by adrianherrera 0
Releases(1.3.0)
  • 1.3.0(Apr 13, 2022)

    • Support LLVM 11/12
    • Tested in Rust 1.6.*, and Ubuntu 20.04
    • Fix issues
      • getc model
      • https://github.com/AngoraFuzzer/Angora/commit/b31af93bb7401a296af0ddaa7b80eaaed7f73415
      • https://github.com/AngoraFuzzer/Angora/issues/86
    • New PRs
    Source code(tar.gz)
    Source code(zip)
  • 1.2.2(Jul 17, 2019)

    • Implementation of Never-zero counter: The idea is from Marc and Heiko in AFLPlusPlus . https://github.com/vanhauser-thc/AFLplusplus/blob/master/llvm_mode/README.neverzero

    • add inst_ratio : issue #67

    • fix asan compatible: did not instrument function startswith "asan.module"

    Source code(tar.gz)
    Source code(zip)
  • 1.2.1(Jun 14, 2019)

  • 1.2.0(May 23, 2019)

This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022