Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Overview

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks

This repository contains the official code for the paper Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks.

Requirements

This codebase has been tested with the following package versions:

python=3.8.8
torch=1.9.0+cu102
torchvision=0.10.0+cu102
PIL=8.1.0
numpy=1.19.2
scipy=1.6.1
tqdm=4.57.0
sklearn=0.24.1
albumentations=1.0.3

Prepare data

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    imagenet/
    CIFAR10/
    300W/
    ...
ssl-invariances/
    datasets/
    models/
    readme.md
    ...

For synthetic invariance evaluation, get the ILSVRC2012 validation data from https://image-net.org/ and store in ../data/imagenet/val/.

For real-world invariances, download the following datasets: Flickr1024, COIL-100, ALOI, ALOT, DaLI, ExposureErrors, RealBlur.

For extrinsic invariances, get Causal3DIdent.

Finally, our downstream datasets are CIFAR10, Caltech101, Flowers, 300W, CelebA, LSPose.

Pre-training models

We pre-train several models based on the MoCo codebase.

To set up a version of the codebase that can pre-train our models, first clone the MoCo repo onto the same level as this repo:

git clone https://github.com/facebookresearch/moco

This should be the resulting file structure:

data/
ssl-invariances/
moco/

Then copy the files from ssl-invariances/pretraining/ into the cloned repo:

cp ssl-invariances/pretraining/* moco/

Finally, to run our models, enter the cloned repo by cd moco and run one of the following:

# train the Default model
python main_moco.py -a resnet50 --model default --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Ventral model
python main_moco.py -a resnet50 --model ventral --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Dorsal model
python main_moco.py -a resnet50 --model dorsal --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Default(x3) model
python main_moco.py -a resnet50w3 --model default --moco-dim 384 --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

This will train the models for 200 epochs and save checkpoints. When training has completed, the final model checkpoint, e.g. default_00199.pth.tar, should be moved to ssl-invariances/models/default.pth.tarfor use in evaluation in the below code.

The rest of this codebase assumes these final model checkpoints are located in a directory called ssl-invariances/models/ as shown below.

ssl-invariances/
    models/
        default.pth.tar
        default_w3.pth.tar
        dorsal.pth.tar
        ventral.pth.tar

Synthetic invariance

To evaluate the Default model on grayscale invariance, run:

python eval_synthetic_invariance.py --model default --transform grayscale ../data/imagenet

This will compute the mean and covariance of the model's feature space and save these statistics in the results/ directory. These are then used to speed up future invariance computations for the same model.

Real-world invariance

To evaluate the Ventral model on COIL100 viewpoint invariance, run:

python eval_realworld_invariance.py --model ventral --dataset COIL100

Extrinsic invariance on Causal3DIdent

To evaluate the Dorsal model on Causal3DIdent object x position prediction, run:

python eval_causal3dident.py --model dorsal --target 0

Downstream performance

To evaluate the combined Def+Ven+Dor model on 300W facial landmark regression, run:

python eval_downstream.py --model default+ventral+dorsal --dataset 300w

Citation

If you find our work useful for your research, please consider citing our paper:

@misc{ericsson2021selfsupervised,
      title={Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks}, 
      author={Linus Ericsson and Henry Gouk and Timothy M. Hospedales},
      year={2021},
      eprint={2111.11398},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023