Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Overview

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks

This repository contains the official code for the paper Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks.

Requirements

This codebase has been tested with the following package versions:

python=3.8.8
torch=1.9.0+cu102
torchvision=0.10.0+cu102
PIL=8.1.0
numpy=1.19.2
scipy=1.6.1
tqdm=4.57.0
sklearn=0.24.1
albumentations=1.0.3

Prepare data

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    imagenet/
    CIFAR10/
    300W/
    ...
ssl-invariances/
    datasets/
    models/
    readme.md
    ...

For synthetic invariance evaluation, get the ILSVRC2012 validation data from https://image-net.org/ and store in ../data/imagenet/val/.

For real-world invariances, download the following datasets: Flickr1024, COIL-100, ALOI, ALOT, DaLI, ExposureErrors, RealBlur.

For extrinsic invariances, get Causal3DIdent.

Finally, our downstream datasets are CIFAR10, Caltech101, Flowers, 300W, CelebA, LSPose.

Pre-training models

We pre-train several models based on the MoCo codebase.

To set up a version of the codebase that can pre-train our models, first clone the MoCo repo onto the same level as this repo:

git clone https://github.com/facebookresearch/moco

This should be the resulting file structure:

data/
ssl-invariances/
moco/

Then copy the files from ssl-invariances/pretraining/ into the cloned repo:

cp ssl-invariances/pretraining/* moco/

Finally, to run our models, enter the cloned repo by cd moco and run one of the following:

# train the Default model
python main_moco.py -a resnet50 --model default --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Ventral model
python main_moco.py -a resnet50 --model ventral --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Dorsal model
python main_moco.py -a resnet50 --model dorsal --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Default(x3) model
python main_moco.py -a resnet50w3 --model default --moco-dim 384 --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

This will train the models for 200 epochs and save checkpoints. When training has completed, the final model checkpoint, e.g. default_00199.pth.tar, should be moved to ssl-invariances/models/default.pth.tarfor use in evaluation in the below code.

The rest of this codebase assumes these final model checkpoints are located in a directory called ssl-invariances/models/ as shown below.

ssl-invariances/
    models/
        default.pth.tar
        default_w3.pth.tar
        dorsal.pth.tar
        ventral.pth.tar

Synthetic invariance

To evaluate the Default model on grayscale invariance, run:

python eval_synthetic_invariance.py --model default --transform grayscale ../data/imagenet

This will compute the mean and covariance of the model's feature space and save these statistics in the results/ directory. These are then used to speed up future invariance computations for the same model.

Real-world invariance

To evaluate the Ventral model on COIL100 viewpoint invariance, run:

python eval_realworld_invariance.py --model ventral --dataset COIL100

Extrinsic invariance on Causal3DIdent

To evaluate the Dorsal model on Causal3DIdent object x position prediction, run:

python eval_causal3dident.py --model dorsal --target 0

Downstream performance

To evaluate the combined Def+Ven+Dor model on 300W facial landmark regression, run:

python eval_downstream.py --model default+ventral+dorsal --dataset 300w

Citation

If you find our work useful for your research, please consider citing our paper:

@misc{ericsson2021selfsupervised,
      title={Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks}, 
      author={Linus Ericsson and Henry Gouk and Timothy M. Hospedales},
      year={2021},
      eprint={2111.11398},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021