U-Net for GBM

Overview

My Final Year Project(FYP) In National University of Singapore(NUS)

You need

Pytorch(stable 1.9.1) 

Both cuda version and cpu version are OK

File Structure

📦FYP-U-Net
 ┣ 📂data
 ┃ ┣ 📂imgs
 ┃ ┃ ┣ 📌···.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂masks
 ┃ ┃ ┣ 📌···_mask.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂PredictImage 
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┣ 📂SaveImage
 ┃ ┃ ┣ 📌0.tif
 ┃ ┃ ┣ 📌1.tif
 ┃ ┃ ┗ ···
 ┃ ┗ 📂Source
 ┃ ┃ ┣ 📂TCGA_CS_4941_19960909
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_1_mask.tif 
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2.tif
 ┃ ┃ ┃ ┣ 📌TCGA_CS_4941_19960909_2_mask.tif 
 ┃ ┃ ┃ ┗ ···
 ┃ ┃ ┣ 📂TCGA_CS_4942_19970222
 ┃ ┃ ┗ ···
 ┣ 📂params
 ┃ ┗ 📜unet.pth
 ┣ 📓README,md
 ┣ 📄data.py
 ┣ 📄net.py
 ┣ 📄utils.py
 ┗ 📄train.py
  • 'data' dir contains the origin dataset in 'Source' dir. And the dataset can be download in Kaggle (https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/). And also you can use different dataset.
  • 'imgs' contains images and 'masks' contains corresponding masks to images. Corresponding masks have a _mask suffix. More inforamtion you can check in kaggle.
  • 'SaveImage' is meant for store train results and 'PredictImage' is meant for store test results.
  • 'params' is meant for store model.

Quick Up

Run train.py

Change DataSet

  • Delte all images in data dir and its subdir.

  • Install dataset from kaggle or anything you like(PS. Corresponding masks must have a _mask suffix) into 'Source' dir

  • Run data.py

    python3 data.py
    

    Remember change the path. After this, you will get images and masks in imgs dir and masks dir.

  • Run train.py

    python3 train.py
    

    Remember change the path. And you can see the results in 'SaveImage' dir and 'PredictImage' dir.

Results

Segment Image

Pre-trained model

https://drive.google.com/file/d/1yyrITv7BQf9kDnP__g6Qa3_wUPD1c_i_/view?usp=sharing

Owner
PinkR1ver
Artist, go with the flow, stay up late
PinkR1ver
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022