Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

Related tags

Deep LearningAOS
Overview

AOS: Airborne Optical Sectioning

Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned aircraft, to sample images within large (synthetic aperture) areas from above occluded volumes, such as forests. Based on the poses of the aircraft during capturing, these images are computationally combined to integral images by light-field technology. These integral images suppress strong occlusion and reveal targets that remain hidden in single recordings.

Single Images Airborne Optical Sectioning
single-images AOS

Source: Video on YouTube | FLIR

This repository contains software modules for drone-based search and rescue applications with airborne optical sectioning, as discussed in our publications. It is made available under a dual licence model.

Contacts

Univ.-Prof. Dr. Ing. habil. Oliver Bimber

Johannes Kepler University Linz
Institute of Computer Graphics
Altenberger Straße 69
Computer Science Building
3rd Floor, Room 0302
4040 Linz, Austria

Phone: +43-732-2468-6631 (secretary: -6630)
Web: www.jku.at/cg
Email: [email protected]

Sponsors

  • Austrian Science Fund (FWF)
  • State of Upper Austria, Nationalstiftung für Forschung, Technologie und Entwicklung
  • Linz Institute of Technology (LIT)

News (see also Press)

  • 11/15/2021: New work on Through-Foliage Tracking with AOS. See publications (Through-Foliage Tracking with Airborne Optical Sectioning)
  • 06/23/2021: Science Robotics paper appeared. See publications (Autonomous Drones for Search and Rescue in Forests)
  • 5/31/2021: New combined people classifer outbeats classical people classifers significantly. See publications (Combined People Classification with Airborne Optical Sectioning)
  • 04/15/2021: First AOS experiments with DJI M300RTK reveals remarkable results (much better than with our OktoXL 6S12, due to higher GPS precission and better IR camera/stabilizer).

Publications

Modules

  • LFR (C++ and Python code): computes integral images.
  • DET (Python code): contains the person classification.
  • CAM (Python code): the module for triggering, recording, and processing thermal images.
  • PLAN (Python code): implementation of our path planning and adaptive sampling technique.
  • DRONE (C and Python code): contains the implementation for drone communication and the logic to perform AOS flights.
  • SERV (Rust code): contains the implementation of a dabase server to which AOS flights data are uploaded.

Note that the modules LFR, DET, CAM, PLAN, SERV are standalone software packages that can be installed and used independently. The DRONE module, however, relies on the other modules (LFR, DET, CAM, PLAN, SERV) in this repository.

Installation

To install the individual modules, refer to the module's README. For the Python modules (DET, CAM, PLAN) it is sufficient to verify that the required Python libraries are available. Furthermore, the classifier (DET) relies on the OpenVINO toolkit. The modules containing C/C++ code (LFR, DRONE) need to be compiled before they can be used. Similarily the module containing Rust code (SERV) need to be compiled before it can be used. All other modules (LFR, DET, CAM, PLAN, SERV) have to be installed before the DRONE module can be used.

Hardware

For our prototype, an octocopter (MikroKopter OktoXL 6S12, two LiPo 4500 mAh batteries, 4.5 kg to 4.9 kg) carries our payload. In the course of the project 4 versions of payloads with varying components have been used.

Prototype Payload
prototype_2021 payload

Payload Version 1

Initially, the drone was equipped with a thermal camera (FlirVue Pro; 9 mm fixed focal length lens; 7.5 μm to 13.5 μm spectral band; 14 bit non-radiometric) and an RGB camera (Sony Alpha 6000; 16 mm to 50 mm lens at infinite focus). The cameras were fixed to a rotatable gimbal, were triggered synchronously (synched by a MikroKopter CamCtrl controlboard), and pointed downwards during all flights. The flight was planned using MikroKopter's flight planning software and uploaded to the drone as waypoints. The waypoint protocol triggered the cameras every 1m along the flight path, and the recorded images were stored on the cameras’ internal memory cards. Processing was done offline after landing the drone.

Payload Version 2

For the second iteration, the RGB camera was removed. Instead we mounted a single-board system-on-chip computer (SoCC) (RaspberryPi 4B; 5.6 cm × 8.6 cm; 65 g; 8 GB ram), an LTE communication hat (Sixfab 3G/4G & LTE base hat and a SIM card; 5.7 cm × 6.5 cm; 35 g), and a Vision Processing Unit (VPU) (Intel Neural Compute Stick 2; 7.2 cm × 2.7 cm × 1.4 cm; 30 g). The equipments weighted 320 g and was mounted on the rotatable gimbal. In comparison to Version 1, this setup allows full processing on the drone (including path planning and triggering the camera).

Payload Version 3

The third version additionally mounts a Flir power module providing HDMI video output from the camera (640x480, 30 Hz; 15 g), and a video capture card (totaling 350g). In comparison to Version 2, this setup allows faster thermal recordings and thus faster flying speeds. This repository is using Version 3 of our Payload right now.

Payload Version 4

The fourth version does not include any payloads from the previous versions. Instead the payload consists of a custom built light-weight camera array based on a truss design. It carries ten light weight DVR pin-hole cameras (12g each), attached equidistant (1m) to each other on a 9m long detachable and hollow carbon fibre tube (700g) which is segmented into detachable sections (one of the sections is shown in the image) of varying lengths and a gradual reduction in diameter in each section from 2.5cm at the drone centre to 1.5cm at the outermost section.The cameras are aligned in such a way that their optical axes are parallel and pointing downwards. They record images at a resolution of 1600X1200 pixels and videos at a resolution of 1280X720 and 30fps to individual SD cards. All cameras receive power from two central 7.2V Ni-MH batteries and are synchronously triggered from the drone's flight controller trough a flat-band cable bus.

Data

We provide exemplary datasets in the data/open_field, and LFR/data/F0 folders. The digital elevation models in the DEMsubfolders, are provided by the Upper Austrian government, and are converted to meshes and hillshaded images with GDAL. The images and poses are in the corresponding folders. The F0 was recorded while flying over forest with the payload version 1 and is available online. The open field dataset is a linear flight without high vegetation and was recorded with payload version 3 in the course of the experimnents for the "Combined People Classification with Airborne Optical Sectioning" article.

Simulation

A simulator for forest occlusion has been developed by Fracis Seits. The code is available here.

License

  • Data: Creative Commons Attribution 4.0 International
  • Code Modules: You are free to modify and use our software non-commercially; Commercial usage is restricted (see the LICENSE.txt)
  • Occlusion Simulator: MIT
Owner
JKU Linz, Institute of Computer Graphics
JKU Linz, Institute of Computer Graphics
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
A library that allows for inference on probabilistic models

Bean Machine Overview Bean Machine is a probabilistic programming language for inference over statistical models written in the Python language using

Meta Research 234 Dec 29, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab.

CLIP-Guided-Diffusion Just playing with getting CLIP Guided Diffusion running locally, rather than having to use colab. Original colab notebooks by Ka

Nerdy Rodent 336 Dec 09, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022