A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Overview

MCILBoost

Project | CVPR Paper | MIA Paper
Contact: Jun-Yan Zhu (junyanz at cs dot cmu dot edu)

Overview

This is the authors' implementation of MCIL-Boost method described in:
[1] Multiple Clustered Instance Learning for Histopathology Cancer Image Segmentation, Clustering, and Classification.
Yan Xu*, Jun-Yan Zhu*, Eric Chang, and Zhuowen Tu (*equal contribution)
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[2] Weakly Supervised Histopathology Cancer Image Segmentation and Classification
Yan Xu, Jun-Yan Zhu, Eric I-Chao Chang, Maode Lai, and Zhuowen Tu
In Medical Image Analysis, 2014.

Please cite our papers if you use our code for your research.

This package consists of the following two multiple-instance learning (MIL) methods:

  • MIL-Boost [Viola et al. 2006]: set c = 1
  • MCIL-Boost [1] [2]: set c > 1

The core of this package is a command-line interface written in C++. Various Matlab helper functions are provided to help users easily train/test MCIL-Boost model, perform cross-validation, and evaluate the performance.

System Requirement

  • Linux and Windows.
  • For Linux, the code is compiled by gcc 4.8.2 under Ubuntu 14.04.

Installation

  • Download and unzip the code.
    • For Linux users, type "chmod +x MCILBoost".
  • Open Matlab and run "demoToy.m".
  • To use the command-line interface, see "Command Usage".
  • To use Matlab functions, see "Matlab helper functions"; You can modify "SetParamsToy.m" and "demoToy.m" to run your own experiments.

Quick Examples

(Windows: MCILBoost.exe; Linux: ./MCILBoost)
An example for training:
MCILBoost.exe -v 2 -t 0 -c 2 -n 150 -s 0 -r 20 toy.data toy.model
An example for testing:
MCILBoost.exe -v 2 -t 1 -c 2 toy.data toy.model toy.result

Command Usage ([ ]: options)

MCILBoost.exe [-v verbose] [-t mode] [-c #clusters] [-n #weakClfs] [-s softmax] data_file model_file [result_file] (No need to specifiy c, n, s, r for test as the program will copy these parameters from the model_file)

-v verbose: shows details about the runtime output (default = 1) 0 -- no output 1 -- some output 2 -- more output

-t mode: set the training mode (default=0) 0 -- train a model 1 -- test a model

-c #clusters: set the number of clusters in positive bags (default = 1) c = 1 -- train a MIL-Boost model c > 1 -- train a MCIL-Boost model with multiple clusters

-n #weakClfs: set the maximum number of weak classifiers (default = 150)

-s softmax: set the softmax type: (default s = 0) 0 -- GM 1 -- LSE

-r exponent: set the exponent used in GM and LSE (default r = 20)

data_file: set the path for input data.

model_file: set the path for the model file.

result_file: set the path for result file. If result_file is not specified, result_file = data_file + '.result'

Matlab helper functions

  • MCILBoost.m: main entry function: model training/testing, and cross-validation.
  • SetParams.m: Set parameters for MCILBoost.m. You need to modify this file to run your own experiment.
  • TrainModel.m: train a model, call MCIL-Boost command line.
  • TestModel.m: test a model, call MCIL-Boost command line.
  • CrossValidate.m: split the data into n-fold, perform n-fold cross-validation, and report performance.
  • ReadData.m: read Matlab data from a text file.
  • WriteData.m: write Matlab data to a text file.
  • ReadResult.m: read Matlab result data from a text file.
  • MeasureResult.m: evaluate performance in terms of accuracy and auc (area under the curve).
  • AUC: compute the area under ROC curve given prediction and ground truth labels.
  • demoToy.m: demo script for toy data.
  • SetParamsToy.m: set parameters for demoToy.
  • demo1.m: demo script for Fox, Tiger, Elephant experiment.
  • SetParamsDemo1.m: set parameters for demo1.
  • demo2.m: demo script for SIVAL experiment.
  • SetParamsDemo2.m: set parameters for demo2.

Summary of Benchmark Results

  • I provide two scripts for running experiments on publicly available MIL benchmarks.
    • "demo1.m": experiments on Fox, Tiger, Elephant dataset.
      The MIL-Boost achieved 0.61 (Fox), 0.81 (Tiger), 0.82 (Elephant) on 10-fold cross-validation over 10 runs.
    • "demo2.m": experiments on SIVAL dataset. There are 180 positive bags (3 clusters), and 180 negative bags. While multiple clusters appear in positive bags, MCIL-Boost works better than MIL-Boost does.
      MIL-Boost (c=1): mean_acc = 0.742, mean_auc = 0.824
      MCIL-Boost (c=3): mean_acc = 0.879, mean_auc = 0.944
  • Note: See "demo1.m" and "demo2.m" for details.

Input Format

  • Note: You can use Matlab function "ReadData.m" and "WriteData.m" to read/write Matlab data from/to the text file.
  • Description: the input format is similar to the format used in LIBSVM and MILL package. The software also supports a sparse format. In the first line, you first need to specify the number of all instances, and the number of feature dimensions. Each line represents one instance, which has an instance id, bag id, and the label id (>= 1 for positive bags, and 0 for negative bags). Each feature value is represented as a : pair where is the index of the feature (starting from 1)
  • Format:
    : : : : ...
    : : : : ...
  • Example: A toy example that contains two negative bags and two positive bags. (see "toy.data") The negative instance is always (0, 0, 0) while there are two clusters of positive instances (0, 1, 0) and (0, 0, 1)
    8 3
    0:0:0 1:0 2:0 3:0
    1:0:0 1:0 2:0 3:0
    2:1:0 1:0 2:0 3:0
    3:1:0 1:0 2:0 3:0
    4:2:1 1:0 2:1 3:0
    5:2:1 1:0 2:0 3:0
    6:3:1 1:0 2:0 3:1
    7:3:1 1:0 2:0 3:0

Output Format

  • Note: You can use Matlab function "ReadResult.m" to load the Matlab data from the result file.

  • Description: The software outputs four kinds of predictions (see more details in the paper):

    • overall bag-level prediction p_i (the probability of the bag x_i being positive bag)
    • cluster-wise bag-level prediction p_i^k (the probability of the bag x_i belonging to k-th cluster)
    • overall instance-level prediction p_{ij} (the probability of the instance x_{ij} being positive instance)
    • cluster-wise instance-level prediction p_{ij}^k (the probability of the instance x_{ij} belonging to the k-th cluster)
    • In the first line, the software outputs the number of bags, and the number of clusters. Then for each bag, the software outputs the bag-level information and prediction (bag id, number of instances, ground truth label, number of clusters, and p_i).The software also outputs the bag-level prediction for each cluster (cluster id and prediction p_i^k for each cluster). Then for each instance, the software outputs the instance-level prediction (instance id and prediction p_{ij}) and instance-level prediction for each cluster (cluster_id and prediction p_{ij}^k)
  • Format:
    #bag= #cluster=
    bag_id= #insts= label= #cluster= pred=
    cluster_id= pred= cluster_id= pred= ...
    inst_id= pred= cluster_id= pred= cluster_id= pred= inst_id= pred= cluster_id= pred= cluster_id= pred= ...
    ...

  • Example: The output of the toy example:
    #bags=4 #clusters=2
    bag_id=0 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=1 #insts=2 label=0 #clusters=2 pred=0
    cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=0 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=2 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=0 pred=1 cluster_id=0 pred=1 cluster_id=1 pred=0
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0
    bag_id=3 #insts=2 label=1 #clusters=2 pred=1
    cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=0 pred=1 cluster_id=0 pred=0 cluster_id=1 pred=1
    inst_id=1 pred=0 cluster_id=0 pred=0 cluster_id=1 pred=0

    Credit

    Part of this code is based on the work by Piotr Dollar and Boris Babenko.

Owner
Jun-Yan Zhu
Understanding and creating pixels.
Jun-Yan Zhu
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Özlem Taşkın 0 Feb 23, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022