Implementation of the Point Transformer layer, in Pytorch

Overview

Point Transformer - Pytorch

Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed their group to outperform all previous methods in point cloud classification and segmentation.

Install

$ pip install point-transformer-pytorch

Usage

import torch
from point_transformer_pytorch import PointTransformerLayer

attn = PointTransformerLayer(
    dim = 128,
    pos_mlp_hidden_dim = 64,
    attn_mlp_hidden_mult = 4
)

x = torch.randn(1, 16, 128)
pos = torch.randn(1, 16, 3)

attn(x, pos) # (1, 16, 128)

Citations

@misc{zhao2020point,
    title={Point Transformer}, 
    author={Hengshuang Zhao and Li Jiang and Jiaya Jia and Philip Torr and Vladlen Koltun},
    year={2020},
    eprint={2012.09164},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Comments
  • Did You Falsify Your Experimental Results???

    Did You Falsify Your Experimental Results???

    No one can reproduce the performance reported in your original paper. Please post your pre-trained model or your original code. Otherwise, we must question your academic ethics!****

    opened by TruthIsEveryThing 1
  • Issues with my wrapper code

    Issues with my wrapper code

    I wrote some wrapper code to turn this layer into a full transformer and I can't seem to figure out what is going wrong. The following works:

    import torch
    from torch import nn, einsum
    import x_transformers
    from point_transformer_pytorch import PointTransformerLayer
    
    layer = PointTransformerLayer(
        dim = 7,
        pos_mlp_hidden_dim = 64,
        attn_mlp_hidden_mult = 4,
        num_neighbors = 16          # only the 16 nearest neighbors would be attended to for each point
    )
    
    feats = torch.randn(1, 5, 7)
    pos = torch.randn(1, 5, 3)
    mask = torch.ones(1, 5).bool()
    
    y = layer(feats, pos, mask = mask)
    

    However this doesn't work

    import torch
    from torch import nn, einsum
    import x_transformers
    from point_transformer_pytorch import PointTransformerLayer
    
    class PointTransformer(nn.Module):
        def __init__(self, feats, mask, neighbors = 16, layers=5, dimension=5):
            
            super().__init__()
            
            self.feats = feats
            self.mask = mask
            self.neighbors = neighbors
            
            self.layers = []
            
            for _ in range(layers):
                self.layers.append(PointTransformerLayer(
                    dim = dimension,
                    pos_mlp_hidden_dim = 64,
                    attn_mlp_hidden_mult = 4,
                    num_neighbors = self.neighbors
                ))
    
        def forward(self, pos):
            curr_pos = pos
            for layer in self.layers:
                print(curr_pos)
                curr_pos = layer(self.feats, pos, self.mask)
                print("----")
            return curr_pos
    
    model = PointTransformer(feats, mask)
    model(pos)
    

    The error I'm getting is mat1 and mat2 shapes cannot be multiplied (5x7 and 5x15)

    opened by StellaAthena 1
  • point clouds with different number of points

    point clouds with different number of points

    Great job! I have a question about the number of the points in the point cloud. Do you have any suggestion to deal with point clouds with different point. As I know, point cloud models are always applied in Shapenet which contains point clouds with 2048 points. So what can we do if the number of the point clouds is not constant?

    opened by 1999kevin 0
  • Scalar attention or vector attention in the multi-head variant

    Scalar attention or vector attention in the multi-head variant

    It seems that the implementation of the multi-head point transformer produces scalar attention scores for each head.

    https://github.com/lucidrains/point-transformer-pytorch/blob/99bc3958138d8c9d3b882e4ac50b1a18a86160fe/point_transformer_pytorch/multihead_point_transformer_pytorch.py#L62

    opened by ZikangZhou 2
  • The layer structure and mask

    The layer structure and mask

    Hi,

    Thanks for this contribution. In the implementation of attn_mlp the first linear layer increases the dimension. Is this a standard practice because I did not find any details about this in the paper. Also paper also does not describe use of mask, is this again some standard practice for attention layers?

    Thanks!!

    opened by ayushais 1
  • Invariant to cardinality?

    Invariant to cardinality?

    Dear Authors, In your paper you wrote: "The layer is invariant to permutation and cardinality and is thus inherently suited to point cloud processing."

    I do not understand this statement, because your PointTransformerLayer https://github.com/lucidrains/point-transformer-pytorch/blob/main/point_transformer_pytorch/point_transformer_pytorch.py#L31 requires the dim parameter in initialization. So it always expects dim elements in input. What if a point cloud has dim+1 points?

    Thank you in advance.

    opened by decadenza 0
  • Cost too much memory

    Cost too much memory

    I'm not sure whether I used the point-transformer correctly: I just implemented one block for training, and the data shape of (x, pos) in each gpu are both [16, 2048, 3], later I was informed that my gpu is running out of the memory(11.77 GB total capacity)

    opened by JLU-Neal 9
Releases(0.1.5)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Experiments and examples converting Transformers to ONNX

Experiments and examples converting Transformers to ONNX This repository containes experiments and examples on converting different Transformers to ON

Philipp Schmid 4 Dec 24, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022