Implementation of the HMAX model of vision in PyTorch

Overview

PyTorch implementation of HMAX

PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for Computational Cognitive Neuroscience:

http://maxlab.neuro.georgetown.edu/hmax.html

The S and C units of the HMAX model can almost be mapped directly onto TorchVision's Conv2d and MaxPool2d layers, where channels are used to store the filters for different orientations. However, HMAX also implements multiple scales, which doesn't map nicely onto the existing TorchVision functionality. Therefore, each scale has its own Conv2d layer, which are executed in parallel.

Here is a schematic overview of the network architecture:

layers consisting of units with increasing scale
S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1
 \ /   \ /   \ /   \ /   \ /   \ /   \ /   \ /
  C1    C1    C1    C1    C1    C1    C1    C1
   \     \     \    |     /     /     /     /
           ALL-TO-ALL CONNECTIVITY
   /     /     /    |     \     \     \     \
  S2    S2    S2    S2    S2    S2    S2    S2
   |     |     |     |     |     |     |     |
  C2    C2    C2    C2    C2    C2    C2    C2

Installation

This script depends on the NumPy, SciPy, PyTorch and TorchVision packages.

Clone the repository somewhere and run the example.py script:

git clone https://github.com/wmvanvliet/pytorch_hmax
python example.py

Usage

See the example.py script on how to run the model on 10 example images.

You might also like...
Pytorch implementation of
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

This repository contains a pytorch implementation of
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

PyTorch implementation of
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

A PyTorch Implementation of ViT (Vision Transformer)
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Pytorch implementation of the DeepDream computer vision algorithm
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Unofficial PyTorch implementation of MobileViT based on paper
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Comments
  • Provide direct (not nested) path to stimuli

    Provide direct (not nested) path to stimuli

    Hi,

    great repo and effort. I really admire your courage to write HMAX in python. I have a question about loading data in, namely about this part of the code: https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L18

    I know that by default, the ImageFolder expects to have nested folders (as stated in docs or mentioned in this issue) but it's quite clumsy in this case. Eg even if you look at your example, having subfolders for each photo just doesn't look good. Would you have a way how to go around this? Any suggestion on how to provide only a path to all images and not this nested path? I was reading some discussions but haven't figured out how to implement it.


    One more question (I didn't want to open an extra issue for that), shouldn't in https://github.com/wmvanvliet/pytorch_hmax/blob/master/example.py#L28 be batch_size=len(images)) instead of batch_size=10 (written symbolically)?

    Thanks.

    opened by jankaWIS 5
  • Input of non-square images fails

    Input of non-square images fails

    Hi again, I was playing a bit around and discovered that it fails for non-square dimensional images, i.e. where height != width. Maybe I was looking wrong or missed something, but I haven't found it mentioned anywhere and the docs kind of suggests that it can be any height and any width. The same goes for the description of the layers (e.g. s1). In the other issue, you mentioned that

    One thing you may want to add to this transformer pipeline is a transforms.Resize followed by a transforms.CenterCrop to ensure all images end up having the same height and width

    but didn't mention why. Why is it not possible for non-square images? Is there any workaround if one doesn't want to crop? Maybe to pad like in this post*?

    To demonstrate the issue:

    import os
    import torch
    from torch.utils.data import DataLoader
    from torchvision import datasets, transforms
    import pickle
    
    import hmax
    
    path_hmax = './'
    # Initialize the model with the universal patch set
    print('Constructing model')
    model = hmax.HMAX(os.path.join(path_hmax,'universal_patch_set.mat'))
    
    # A folder with example images
    example_images = datasets.ImageFolder(
        os.path.join(path_hmax,'example_images'),
        transform=transforms.Compose([
            transforms.Resize((400, 500)),
            transforms.CenterCrop((400, 500)),
            transforms.Grayscale(),
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * 255),
        ])
    )
    
    # A dataloader that will run through all example images in one batch
    dataloader = DataLoader(example_images, batch_size=10)
    
    # Determine whether there is a compatible GPU available
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # Run the model on the example images
    print('Running model on', device)
    model = model.to(device)
    for X, y in dataloader:
        s1, c1, s2, c2 = model.get_all_layers(X.to(device))
    
    print('[done]')
    

    will give an error in the forward function:

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    [<ipython-input-7-a6bab15d9571>](https://localhost:8080/#) in <module>()
         33 model = model.to(device)
         34 for X, y in dataloader:
    ---> 35     s1, c1, s2, c2 = model.get_all_layers(X.to(device))
         36 
         37 # print('Saving output of all layers to: output.pkl')
    
    4 frames
    [/gdrive/MyDrive/Colab Notebooks/data_HMAX/pytorch_hmax/hmax.py](https://localhost:8080/#) in forward(self, c1_outputs)
        285             conv_output = conv_output.view(
        286                 -1, self.num_orientations, self.num_patches, conv_output_size,
    --> 287                 conv_output_size)
        288 
        289             # Pool over orientations
    
    RuntimeError: shape '[-1, 4, 400, 126, 126]' is invalid for input of size 203616000
    

    *Code for that:

    import torchvision.transforms.functional as F
    
    class SquarePad:
        def __call__(self, image):
            max_wh = max(image.size)
            p_left, p_top = [(max_wh - s) // 2 for s in image.size]
            p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
            padding = (p_left, p_top, p_right, p_bottom)
            return F.pad(image, padding, 0, 'constant')
    
    target_image_size = (224, 224)  # as an example
    # now use it as the replacement of transforms.Pad class
    transform=transforms.Compose([
        SquarePad(),
        transforms.Resize(target_image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
    
    opened by jankaWIS 1
Releases(v0.2)
  • v0.2(Jul 7, 2022)

    For this version, I've modified the HMAX code a bit to exactly match that of the original MATLAB code of Maximilian Riesenhuber. This is a bit slower and consumes a bit more memory, as the code needs to work around some subtle differences between the MATLAB and PyTorch functions. Perhaps in the future, we could add an "optimized" model that is allowed to deviate from the reference implementation for increased efficiency, but for now I feel it is more important to follow the reference implementation to the letter.

    Major change: default C2 activation function is now 'euclidean' instead of 'gaussian'.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(Jul 7, 2022)

Owner
Marijn van Vliet
Research Software Engineer.
Marijn van Vliet
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
This is an easy python software which allows to sort images with faces by gender and after by age.

Gender-age Classifier This is an easy python software which allows to sort images with faces by gender and after by age. Usage First install Deepface

Claudio Ciccarone 6 Sep 17, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022