[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

Related tags

Deep LearningArbSR
Overview

ArbSR

Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021

[Project] [arXiv]

Highlights

  • A plug-in module to extend a baseline SR network (e.g., EDSR and RCAN) to a scale-arbitrary SR network with small additional computational and memory cost.
  • Promising results for scale-arbitrary SR (both non-integer and asymmetric scale factors) while maintaining the state-of-the-art performance for SR with integer scale factors.

Demo

gif

Motivation

Although recent CNN-based single image SR networks (e.g., EDSR, RDN and RCAN) have achieved promising performance, they are developed for image SR with a single specific integer scale (e.g., x2, x3, x4). In real-world applications, non-integer SR (e.g., from 100x100 to 220x220) and asymmetric SR (e.g., from 100x100 to 220x420) are also necessary such that customers can zoom in an image arbitrarily for better view of details.

Overview

overview

Requirements

  • Python 3.6
  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • cv2

Train

1. Prepare training data

1.1 Download DIV2K training data (800 training images) from DIV2K dataset or SNU_CVLab.

1.2 Cd to ./utils and run gen_training_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── DIV2K
	├── HR
		├── 0001.png
		├── ...
		└── 0800.png
	└── LR_bicubic
		├── X1.10
			├── 0001.png
			├── ...
			└── 0800.png
		├── ...
		└── X4.00_X3.50
			├── 0001.png
			├── ...
			└── 0800.png

2. Begin to train

Run ./main.sh to train on the DIV2K dataset. Please update dir_data in the bash file as your_data_path.

Test

1. Prepare test data

1.1 Download benchmark datasets (e.g., Set5, Set14 and other test sets).

1.2 Cd to ./utils and run gen_test_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── benchmark
	├── Set5
		├── HR
			├── baby.png
			├── ...
			└── woman.png
		└── LR_bicubic
			├── X1.10
				├── baby.png
				├── ...
				└── woman.png
			├── ...
			└── X4.00_X3.50
				├── baby.png
				├── ...
				└── woman.png
	├── Set14
	├── B100
	├── Urban100
	└── Manga109
		├── HR
			├── AisazuNihalrarenai.png
			├── ...
			└── YouchienBoueigumi.png
		└── LR_bicubic
			├── X1.10
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png
			├── ...
			└── X4.00_X3.50
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png

2. Begin to test

Run ./test.sh to test on benchmark datasets. Please update dir_data in the bash file as your_data_path.

Quick Test on An LR Image

Run ./quick_test.sh to enlarge an LR image to an arbitrary size. Please update dir_img in the bash file as your_img_path.

Visual Results

1. SR with Symmetric Scale Factors

non-integer

2. SR with Asymmetric Scale Factors

asymmetric

3. SR with Continuous Scale Factors

Please try our interactive viewer.

Citation

@InProceedings{Wang2020Learning,
  title={Learning A Single Network for Scale-Arbitrary Super-Resolution},
  author={Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo},
  booktitle={ICCV},
  year={2021}
}

Acknowledgements

This code is built on EDSR (PyTorch) and Meta-SR. We thank the authors for sharing the codes.

Owner
Longguang Wang
Longguang Wang
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022